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Abstract

We study the effects of carbon price uncertainty on firms’ decisions to decarbonize their op-
erations. We first use information on the pricing of options on emission allowances in the Eu-
ropean Emissions Trading System to create the Carbon VIX, a market-based high-frequency
measure of carbon price uncertainty. Carbon price uncertainty is high, varies substantially
over time, and experiences persistent shocks around major climate policy events. To explore
the effects of carbon price uncertainty on expected aggregate decarbonization investments,
we analyze its effect on the stock returns of firms that help other businesses decarbonize. To
identify these “carbon solution providers,” we extract common types of decarbonization in-
vestments from a large survey of firms, and then identify companies that offer the associated
goods and services. We find that the stock returns of these carbon solution providers vary
positively with carbon prices, but negatively with carbon price uncertainty. The effect of in-
creases in carbon price uncertainty on our proxy for expected decarbonization investments is
economically large and of similar magnitude as the effect of declines in carbon prices. These
findings support predictions from real options theory that firms may delay investments in
decarbonization when faced with uncertainty about the future costs of emissions.
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Reducing aggregate carbon emissions to mitigate climate change is a key global policy objective. A

common policy tool to encourage firms to decarbonize their activities is to impose a price on carbon

emissions, for example through introducing cap-and-trade systems, which covered about 18% of

global emissions in 2023 (World Bank, 2023). In such systems, regulators issue a limited number of

permits to emit carbon. Companies then trade these permits among each other, creating a market

price for carbon emissions and an incentive to decarbonize. While cap-and-trade systems allow

regulators to achieve aggregate emission reduction goals without knowing firms’ abatement costs,

they also introduce uncertainty about future carbon prices, since changes in economic activity,

abatement costs, and policy choices all affect the supply and demand for emission permits.

In this paper we study the effects of carbon price uncertainty in cap-and-trade systems. In par-

ticular, we test the predictions of real option theory on whether such price uncertainty leads firms

to meaningfully reduce investments in decarbonizing their operations until the financial returns

from such investments become more predictable. While carbon price uncertainty is frequently

mentioned by market participants as an impediment to scaling up decarbonization investments,1

a quantification of such effects has been hindered by the absence of measures for both carbon price

uncertainty and decarbonization investments. We address both measurement challenges to show

that carbon price uncertainty has a large negative effect on firms’ decisions to decarbonize.

We study the effects of carbon price uncertainty in the European Emissions Trading System

(ETS), the world’s largest cap-and-trade system. Our first contribution is to provide new measures

of carbon price uncertainty based on the prices of options on EU emission allowances (EUAs),

which allow traders to speculate on or hedge against EUA price changes. Intuitively, when the

prices of both call and put options increase at the same time, this generally reflects a rise in

the expected volatility of the underlying asset, allowing us to back out changes in carbon price

uncertainty from changes in option prices.2

We operationalize this insight by constructing two high-frequency measures of carbon price

uncertainty, the Carbon VIX and Carbon Implied Volatility (CIV), which we make publicly avail-

able at www.carbonvix.org. The construction of the Carbon VIX follows the methodology for

the well-known CBOE VIX index of S&P 500 stock price uncertainty. It is based on building

a portfolio of options whose final payoff approximates the realized variance of EUA futures until

option expiry. Increases in the price of this options portfolio therefore reflect higher expected EUA

price volatility. Our second measure, Carbon Implied Volatility (CIV), measures expected EUA

price volatility via the “implied volatility” of at-the-money options.

Each approach to measuring carbon price uncertainty has distinct advantages and drawbacks.

1For example, Clark, Bernstein, Beugin, Shaffer, and Wadland (2022) report that ”Over the course of dozens of con-
versations with industry, business associations, commercial investors, and other stakeholders, the authors heard again and
again that the carbon-pricing certainty gap is inhibiting investment, and needs to be addressed urgently in order to accelerate
industrial decarbonization.” In a joint statement of 16 European energy firms, a CEO argues that ”a carbon price floor would
reduce volatility and uncertainty for any investor, which makes offshore wind projects without revenue stabilising mechanisms
more viable and thus increases the speed of the urgently needed transformation to low-carbon energy systems” (EnBW, 2018).

2Option prices are based, among other things, on the level of expected price volatility and a volatility risk premium.
Indeed, we show below that the level of implied volatility absent a risk-premium adjustment is generally higher than average
realized volatility of the underlying, though the two comove strongly. However, such a risk premium is unlikely to experience
large changes at high frequencies. Therefore, while we acknowledge that the level of option prices also incorporates a volatility
risk premium, we interpret changes in option prices as largely reflecting changes in expected volatility, in line with similar
interpretations in other markets by Bloom (2014), Cremers et al. (2021), Gao et al. (2022), and Bretscher et al. (2018).
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Figure 1: The Carbon VIX

Note: This figure shows the level of the Carbon VIX at the weekly frequency, annotated with selected market events.

The Carbon VIX methodology does not require a pricing model, but uses observed option prices

from a wide range of strike prices with varying liquidity. The CIV approach is only based on

relatively liquid at-the-money options, but requires a pricing model to infer implied volatilities.

Despite these differences, the two measures have near-identical levels and are highly correlated

(weekly changes in Carbon VIX and CIV have a correlation of 0.96). We thus proceed by using

the Carbon VIX as our main proxy for carbon price uncertainty, but show that our results are

robust to analyzing CIV. For our baseline analysis, we consider uncertainty over the next 120

days. Changes in carbon price uncertainty are highly correlated across the term structure, so the

horizon of the uncertainty measure does not change our results.

We use these new measures to document several patterns regarding carbon price uncertainty

(Figure 1 shows the development of the Carbon VIX, annotated with important market events).

First, the level of carbon price uncertainty in the ETS is high: between September 2013 and

December 2022, carbon prices had an average annualized expected volatility of 54%. Second,

carbon price uncertainty varies meaningfully over time, ranging between 30% and 83% over the

same period. It also moves substantially around events that affect the supply of certificates

(e.g., the introduction of the Market Stability Reserve) as well as events affecting the demand

for certificates (e.g., the start of the Covid-19 epidemic). Increases in carbon price uncertainty

are generally followed by periods of higher realized carbon price volatility. Third, carbon price

uncertainty is relatively persistent. And fourth, the Carbon VIX is related to, but distinct from,
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the EU Equity VIX and the Oil VIX (correlations of 0.11 and 0.14, respectively), suggesting that

it captures an important new dimension of economic uncertainty.

In the second part of the paper, we explore the effects of carbon price uncertainty on the

decisions of firms to invest in decarbonizing their operations. We begin by exploring a new survey

dataset on realized decarbonization activities undertaken by firms. The data was collected by

CDP, formerly known as the Carbon Disclosure Project, and constitutes the largest and most

comprehensive source of corporate climate action. In the annual survey, firms disclose information

on implemented initiatives to decarbonize their scope-1 emissions including the type of initiative,

the investment amount, and a project description. Between 2015 and 2023, firms reported more

than 12,500 unique decarbonization projects totaling about EUR 639 billion.

We then provide a first exploration of the effect of carbon price uncertainty on realized de-

carbonization investments. In a panel regression, we compare the CDP-reported decarbonization

investments of firms whose operations are exposed to the EU ETS to investments of firms without

such exposure at times of varying levels of carbon price uncertainty. We find that, during periods

of higher carbon price uncertainty, firms with ETS exposure report lower decarbonization invest-

ment rates, defined as the ratio of a firm’s decarbonization investments to its scope-1 emissions.

Including various controls and fixed effects, a one standard deviation (or 4.5 percentage points)

increase in the Carbon VIX is associated with an economically meaningful 1.7-2.4 EUR/tCO2e

decrease in the investment rate, relative to an average rate of 18 EUR/tCO2e.

The prior analysis encounters a key challenge: while the Carbon VIX allows us to measure

changes in carbon price uncertainty at high frequencies, actual investment decisions are both

implemented and measured at much lower frequencies. For example, we only observe completed

investments at an annual frequency, and thus find it difficult to link carbon price uncertainty to

the time at which the investment decision was made.

To better quantify the effects of carbon price uncertainty on decarbonization activities, we thus

construct a higher-frequency measure of changes in the expected investments in decarbonization

via the stock returns of firms that provide goods and services that help other firms decarbonize.

These “carbon solution providers” should benefit when other firms increase their decarbonization

investments. Thus, if investors expect spending on decarbonization activities to increase, this

expectation would be reflected in higher stock returns of carbon solution providers.

To identify carbon solutions providers, we first use information on firms’ reported decarboniza-

tion projects to identify common decarbonization activities, and then identify companies that

provide the goods and services required to undertake such activities. We use GPT, an AI-based

language processing tool from OpenAI (2024), to extract common activities of how firms reduce

their carbon emissions from textual descriptions of decarbonization projects in the CDP data.

We identify more than 1,200 decarbonization activities. Among the most common activities are

investments in renewable energy such as wind and solar power, the prevention of waste energy,

and the use of alternative fuels; they also include many less-common industry-specific solutions

such as boiler upgrades or variable frequency drives.

To explore which firms offer these “carbon solutions”, we collect textual descriptions of the

products and services offered by more than 5,000 publicly listed European firms. We then use GPT
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to identify firms that provide carbon solutions similar to the most common solutions reported in

the CDP data. After merging with stock return data, we obtain a sample of 201 “carbon solution

providers” spanning 15 industries and 18 countries. On average, carbon solution firms are slightly

smaller and younger than other firms. Moreover, they generally exhibit higher market-to-book

ratios and higher capital expenditures per asset.

To quantify the impact of carbon price uncertainty on firms’ expected decarbonization deci-

sions, we estimate a panel regression of weekly stock returns on changes in both carbon prices

and carbon price uncertainty, interacting each measure with an indicator that identifies carbon

solution providers. If higher carbon price uncertainty creates incentives for emitters to delay

decarbonization investments, we would expect lower stock returns for carbon solution providers

during periods of rising carbon price uncertainty. Similarly, we would expect these firms to have

higher stock returns in weeks when increasing carbon prices create incentives for firms to invest in

decarbonization. Our specifications ensure that our results are not driven by a possible exposure

of carbon solution providers to uncertainty in the broader stock market or to oil price uncertainty.

We estimate this regression over two sample periods: the years 2013-2017, when the EU carbon

price averaged about EUR 6 per EUA, and the years 2018-2022, when the carbon price averaged

about EUR 40. This sample split is motivated by the intuition that carbon price returns and

changes in carbon price uncertainty should have only small effects during periods of low prices,

while they should be more important determinants of decarbonization decisions at higher prices.

We find that carbon price uncertainty substantially lowers expected decarbonization invest-

ments. Over the high-price sample, the stock returns of carbon solution providers respond more

positively to carbon price returns and more negatively to changes in the Carbon VIX than the

returns of other firms. Changes in carbon prices and carbon price uncertainty have similarly-sized

effects: a one standard deviation increase in the carbon price return is associated with a 12.9 basis

points relative increase in the stock returns of carbon solution providers, while a one standard

deviation higher increase in the Carbon VIX is associated with a 15.7 basis points relative de-

crease. Put differently, a one percentage point increase in carbon price uncertainty has a similar

(negative) impact on carbon solution providers’ stock returns as a EUR 1.12 lower carbon price.

Consistent with our intuition, we find no such effects during the low-price sample.

The finding that carbon solution providers are negatively exposed to carbon price uncertainty is

robust to several alternative specifications. First, we consider two additional methods of identifying

carbon solution firms. The first is based on firm-level measures of climate change exposure provided

by Sautner et al. (2023). This data is based on firms’ earnings conference calls and provides a

measure of “climate opportunity” exposure at the firm-year level. Second, we use the holdings of

the European Green Deal UCITS ETF (EUGD), an ETF that contains 50 European firms that

“could benefit from the European Green Deal, a landmark transaction enacted by the European

Commission to make Europe the first carbon neutral continent”. Our findings are qualitatively and

quantitatively similar across these different measures of carbon solution providers. Additionally,

we obtain almost identical regression estimates via either the Carbon VIX or Carbon Implied

Volatility measure of carbon price uncertainty, and when we additionally include a measure of

past realized carbon price volatility interacted with an indicator for climate solution providers.
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Contribution. Our work contributes to a growing literature that studies the effects of carbon

pricing regimes on firm behavior. This literature has largely concluded that the presence of carbon

pricing regimes—including carbon taxes and cap-and-trade systems—has substantially reduced

carbon emissions (e.g., Martinsson et al., 2024; Colmer et al., 2024). Green (2021) provides

a recent review of this evidence. Our work expands on existing work by constructing a first

direct measure of carbon price uncertainty and studying its effects on a high-frequency proxy for

decarbonization investments. While this relationship between carbon price uncertainty and green

investments had been well understood theoretically (see the contributions by Blyth et al., 2007;

Yang et al., 2023; Fuss et al., 2009; Golub et al., 2020; Ginbo et al., 2021; Aldy and Armitage,

2020), measurement challenges in both decarbonization investments and carbon price uncertainty

have precluded prior quantifications. Our findings highlight that the effects of changes in carbon

price uncertainty on decarbonization activities are of the same magnitude as the effects of changes

in the level of the carbon price. A key implications is that policy makers hoping to encourage firms

to invest in decarbonization should focus efforts on reducing market uncertainty with respect to

carbon prices, for example by reducing climate policy uncertainty.

The idea that carbon price uncertainty can affect firms’ decisions to decarbonize follows an

extensive literature exploring the effects of uncertainty on firms’ decision to make irreversible

investments (Bernanke, 1983; Dixit and Pindyck, 1994; Abel and Eberly, 1996; Bloom, 2009).

Most relevant to our study is Kaboski’s (2005) model of the effects of factor price uncertainty on

a firm’s decision to switch between production technologies with different factor intensities (e.g.,

high-carbon or low-carbon technologies). When technology investments are partially irreversible,

uncertainty about future carbon prices raises the real option value of potential decarbonization

investments and thus makes it less likely that polluters execute such decarbonization investments.

Our work contributes towards recent efforts to measure climate policy uncertainty and to ex-

plore its effects (see, e.g., Gavriilidis, 2021; Berestycki et al., 2022; Fried et al., 2021; Bouri et al.,

2022; Basaglia et al., 2021; Wang et al., 2023). While existing efforts to measure climate policy

uncertainty are based on an analysis of newspaper coverage, our new measure of carbon price

uncertainty is based directly off market prices, varies at high frequencies, and has a direct quanti-

tative interpretation. The Carbon VIX also captures all drivers of carbon price uncertainty, which

include factors such as the broader economic environment and changes in abatement technology

and cost in addition to changes in climate policy.

Our paper provides insights into the costs and benefits of various carbon pricing regimes (see

the discussions in Weitzman, 1974; Stavins, 2019). We highlight that the carbon price uncertainty

inherent in cap-and-trade systems incentivizes firms to delay their decarbonization activities, likely

raising the total cost of the overall investment required to achieve a certain emission reduction.

Most directly, our work supports proposals for various mechanisms to mitigate the permit price

volatility in cap-and-trade systems, such as setting price ceilings and price floors (Burtraw et al.,

2006, 2010, 2018; Schmalensee and Stavins, 2017; Flachsland et al., 2020). While such price floors

have been included in some cap-and-trade systems, such as the Regional Greenhouse Gas Initiative

(RGGI) amd the California ETS in the United States, other large-scale ETS such as that in the

European Union do not contain an explicit price floor.
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I. Measuring Carbon Price Uncertainty

We now turn to the construction of our two measures of carbon price uncertainty: the Carbon VIX

and Carbon Implied Volatility (CIV). First, we provide an overview of the EU Emissions Trading

System and its associated spot and derivative markets for emissions allowances. We then detail

our methodology for deriving these uncertainty measures from observed derivatives prices.

I.A. Cap-and-Trade Systems

In cap-and-trade systems, regulators impose a cap on total carbon emissions from certain sectors

or corporate activities by issuing a corresponding quantity of emission allowances. Regulated

entities must then surrender an emission allowance for each unit of carbon emitted. The initial

allocation of allowances can be for free or via auctions, and allowances are subsequently traded in

a market-based system. The resulting equilibrium prices are driven by the supply of and demand

for allowances, which are determined by factors such as climate policy, economic activity and the

cost of abatement.

I.B. The European Emissions Trading System

There are currently 27 cap-and-trade schemes in place covering 18% percent of global carbon

emissions; in contrast, carbon taxes cover less than 6% of global emissions (World Bank, 2023).3

The EU Emissions Trading System (ETS) was started in 2005 and is the oldest and largest

cap-and-trade scheme. In 2022, it generated total revenues of $42bn, which constitutes 44% of

that year’s global revenue from carbon pricing. The EU ETS covers carbon emissions of about

10,000 installations in the manufacturing and energy sectors as well as emissions of aviation firms

operating flights within the EU. Emissions covered by EU ETS account for about 40% of the

European Union’s total carbon emissions.

To comply with the EU ETS, firms have to report and verify their regulated emissions annually

and surrender a corresponding amount of EU allowances (EUAs), with heavy sanctions for non-

compliers. Each EUA permits its holder to emit one ton of carbon dioxide equivalents. Firms can

“bank” EUAs for use in subsequent years.

In 2013, an EU-wide cap of issued EUAs was set at 2.1 billion, based on the average number of

total allowances issued in the five preceding years. To reduce aggregate carbon emissions, this cap

is reduced annually by a predetermined number of EUAs. Initially, this linear reduction factor was

set at 1.74% relative to the initial cap for years 2013–2020; this factor was subsequently increased

to 2.2% (2021–2023), 4.3% (2024–2027), and 4.4% (2028–30). This should lead to a cap by 2030

that is 62% lower than 2005 emission levels (European Commission, 2023b).4

Despite the year-on-year decrease in the cap, the cumulative quantity of allowances issued led

to an initial surplus in supply, resulting in a very low market price for EUAs. To address the

problem of excess supply of EUAs, the EU commission proposed a market stability reserve. The

3See Pedersen (2023) for an overview of various types of carbon pricing.
4For years 2013–2020, the linear reduction factor did not apply to emissions of the aviation sector. The cap reduction

also includes planned one-off removals of 0.1 billion EUAs in 2024 and 2026.
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market stability reserve works on a set of predetermined rules and withdraws (releases) a fraction

of the total allowances in circulation if they are above (below) a certain threshold. Between its

launch in January 2019 and December 2022, the reserve absorbed a total of 44% of newly issued

EUAs (European Commission, 2023a).

Primary and Secondary Allowance Market. Allowances are either distributed via public

auctions or allocated for free to emitting firms. The fraction of free allowances that regulated

firms receive depends on the type of regulated activity and varies with sector-specific emissions-

per-output benchmarks and firms’ historic output. Between 2013 and 2023, aircraft operators

received more than 80% of allowances for free, while firms in the power sector were generally not

eligible for free allowances. The share of allowances industrial firms received for free gradually

decreased from 80% in 2013 to 30% in 2020. In 2022, the total quantity of allowances issued

amounted to 1.5 billion, of which 36% were free allocations. Allowances that are not allocated

for free are auctioned off via a central platform. Such auctions occur multiple times per week on

pre-scheduled days. The quantity of EUAs for auction is known in advance and cleared in a single

round at a uniform price. Auctions are also open to authorized bidders not covered by the ETS

such as investment funds and credit institutions. In 2022, auctions were held on 220 days with an

average of 20 participating bidders.

There exists a large and active secondary market for EUAs. While a total of 486 million

allowances were auctioned in 2022, trading volume on spot markets was about 750 million EUAs,

with secondary market prices closely mirroring auction settlement prices (DEHSt, 2023).

Allowance Futures Market. The most liquid venue to trade EUAs is in the futures market. In

2022, the trading volume of futures contracts was about 9 billion EUAs, accounting for 87% of total

trading volume on auction, spot and futures markets (DEHSt, 2023). We obtain daily settlement

prices of futures on EUAs traded on the London Intercontinental Exchange (ICE), which handles

85% of total open interest on EUA derivatives (ESMA, 2022). ICE EUA futures expire quarterly

in March, June, September, and December; December futures are by far the most liquid, possibly

due to their proximity to the EUA delivery date in April each year (ESMA, 2022). We therefore

choose the closest December futures contract as our primary measure of carbon prices. Due to

the bankability of EUAs, future prices and spot prices are tightly linked, with a term structure

relating largely to investor funding costs (Palao and Pardo, 2021). At expiry, the futures seller has

to transfer EUAs to the futures buyers’ EUA trading account (i.e., the futures involve “physical

delivery” of EUAs). Each futures contract yields delivery of one lot (1000) EUAs.

Carbon Prices Over Time. Carbon prices are volatile and increased substantially over time

(see Panel A of Figure 2). The early period of our sample is characterized by low prices as a

result of the large surplus in emission allowances discussed above: between September 2013 and

December 2017, the average carbon price was 6 EUR. After several policy changes limiting the

supply of allowances, including the introduction of the market stability reserve, carbon prices

reached levels of 30 EUR by December 2020 and further increased to above 80 EUR at the end of

our sample in December 2022. The average price during the period 2018-2022 was 40 EUR.

Carbon prices are determined by the supply and demand for EUAs. The regulator can deter-

7



mine the supply via adjustments to the total cap or other policy choices affecting the quantity of

available allowances, such as the cancellation of allowances in the market stability reserve. The

demand for emission allowances is driven by economic activity and the cost of emission abatement.

That is, demand increases with expected output by regulated firms and decreases as advances in

abatement technologies lower the cost of carbon reduction.

Figure 2: The EU Carbon Market

(a) Carbon Price (b) Carbon Option Market Size

Note: Panel (a) shows the weekly price of December-expiry ICE EUA futures. Panel (b) shows the annual sum of trading
volume and annual average of open interest of EUA futures options traded on ICE (London). One option is written on one
futures contract which in turn delivers 1000 EUAs. Volume and open interest are in billions of EUAs.

EUA Futures Options Market. EUA futures contracts function as the underlying for EUA

futures options (hereafter, EUA options). EUA options expire on the same quarterly cycle as EUA

futures. The underlying futures contract for all options that expire in a year is that year’s December

futures contract. EUA options are European, meaning they can only be exercised at expiration.

At expiry, each EUA call option gives option holders the right, but not the obligation, to buy one

EUA futures contract at the pre-specified strike price. Put options confer the corresponding right,

but not obligation, to sell one futures contract at the strike price. Appendix Table A.2 provide

further details on the contract specifications for EUA futures and options.

We obtain EUA options data from IVolatility.com (see Appendix A.1.A for details). The market

for EUA options is large and liquid. Panel B of Figure 2 shows the annual sum of EUA options

trading volume in billions of contracts.5 Trading volume is relatively low at the beginning of our

sample, with an annual volume of around 500m contracts, which corresponds to 500m tons of CO2

equivalent emissions. Alongside the recent increase in EUA prices, the volume of EUA options

has picked up, reaching more than 2bn contracts annually between 2018 and 2022. In terms of

Euros, EUA option’s annual trading volume reached about EUR 10bn in 2021 and 2022. Options

are used for hedging or speculation. The increasing use of EUA options after 2018 indicates the

5Between July and October 2018, the vendor data display zero trading volumes on most days. We replace the volume
observations for those four months with the observations from June 2018.
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higher economic relevance of the EU ETS over the high-price sample, which corresponds to a

period in which carbon prices—and carbon price uncertainty—played an increasingly important

role for emitters’ finances.

Table I shows EUA option volume across option contract type as a fraction of total option

trading volume. The top panel shows call options, the bottom panel put options. Each panel

splits options by their ‘moneyness’ and ‘days to expiry.’ An option’s moneyness indicates the

likelihood of a positive payoff at expiry. Call (put) options are further “in-the-money” when the

current future price is higher above (further below) the options’ strike price. Table I shows that

37.5% of call option volume in our sample is in deep-out-of-the-money options and 37.6% (29.7 +

7.9) of the EUA call option volume is in options below 120 days to expiry. Similar patterns hold

for put options. These volume patterns are typical for option markets, where volumes are often

higher for out-of-the-money options with short maturities. Our construction of the Carbon VIX

exploits these liquidity patterns by using the prices of out-of-the-money short-maturity options.6

Table I: EUA Options Volume

Days to Expiry

10-30 31-120 121-240 241- All

Calls

0.0 ≤ F/K ≤ 0.7 Deep Out Of The Money 0.7 6.8 6.9 23.1 37.5
0.7 < F/K ≤ 0.9 Out Of The Money 2.4 11.3 5.5 12.5 31.7
0.9 < F/K ≤ 1.1 At The Money 4.3 10.0 3.4 8.7 26.4
1.1 < F/K ≤ 1.3 In The Money 0.5 1.3 0.6 1.2 3.5
1.3 < F/K Deep In The Money 0.0 0.3 0.2 0.4 0.9
All 7.9 29.7 16.5 45.8 100.0

Puts

0.0 ≤ K/F ≤ 0.7 Deep Out Of The Money 0.8 6.5 6.9 16.0 31.2
0.7 < K/F ≤ 0.9 Out Of The Money 4.7 19.6 6.3 16.6 47.1
0.9 < K/F ≤ 1.1 At The Money 3.2 8.0 2.2 6.3 20.7
1.1 < K/F ≤ 1.3 In The Money 0.1 0.2 0.1 0.5 0.8
1.3 < K/F Deep In The Money 0.0 0.1 0.0 0.1 0.2
All 8.7 35.4 15.5 40.4 100.0

Note: EUA futures options trading volume (number of contracts) in percent of the sample total (2013.9 - 2022.12), split by
contract type. Different rows correspond to different values of “moneyness”, where K is the option’s strike price, and F is
the current spot price of the underlying futures contract. Different columns correspond to different option expiration dates.

I.C. Option Prices and Uncertainty.

Options-based uncertainty measures rely on the positive impact of the expected return volatility

of the underlying asset on option prices. This positive relationship stems from the non-linearity in

option payoffs: Call options’ final payoff rises if the futures price ends up further above the options’

6Table A.4 shows option open interest, that is the number of outstanding options contracts, across contract types.
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strike, while their final payoff is always zero no matter how far the prices end up below the strike.

Thus, call options gain from a thicker right tail of the underlying return distribution, while they

do not symmetrically lose from a thicker left tail. The reverse applies to put options. Therefore,

the expected payoff of both put and call options is increasing in expected return volatility of the

underlying. The same is generally true for option prices, which thus contain information about the

expected return volatility of the underlying asset: when both EUA calls and EUA puts become

more expensive, the markets’ expectation of EUA futures’ return volatility has likely risen.

Options-based uncertainty measures then summarize the general option price level. There are

two prominent approaches to constructing an options-based uncertainty measure: the price of an

option portfolio, and options’ implied volatilities. We next describe how we construct measures of

carbon price uncertainty based on both approaches, before comparing and contrasting them.

I.D. The Carbon VIX.

For our main measure of carbon price uncertainty, the Carbon VIX, we follow the CBOE “VIX”

methodology (CBOE, 2023), implemented using the code provided by Vilkov (2023). Conceptually,

the Carbon VIX is obtained by constructing a portfolio of EUA options, with portfolio weights

chosen such that the portfolio payoff at option expiry is approximately equal to EUA futures’

realized variance until option expiry.7 When expected EUA price variance rises—corresponding to

periods with higher carbon price uncertainty—the price of this portfolio rises. The Carbon VIX is

the square-root of the price of that portfolio, since the VIX method targets expected volatility, not

variance. Following Bloom (2014), Bretscher et al. (2018), Cremers et al. (2021), Gao et al. (2022)

and others, we thus interpret changes in the Carbon VIX as changes in carbon price uncertainty.8

To construct a constant-maturity Carbon VIX capturing the annualized expected volatility

over the next 120 days, we linearly interpolate between CarbonV IX120,−
t and CarbonV IX120,+

t ,

constructed from EUA options with maturities just below and above 120 days, respectively. We

choose 120 days as our constant-maturity target to use the most liquid EUA options while mini-

mizing the impact of price pressures around option expiry.9 As a result, the Carbon VIX measures

the expected carbon price return volatility over the next approximately 120 days, capturing uncer-

tainty about any information that could impact carbon prices within that time frame. Importantly,

this includes uncertainty from events that are expected to occur beyond the 120 day horizon (like

an election 2 years hence), as long as information about these events might materialize—and thus

7The portfolio payoff is exactly equal to the realized variance of the underlying until option expiry if an infinite number
of strike prices are available. This condition is obviously violated in empirical implementations. However, EUA options with
sufficiently many liquid strike prices are available to obtain a meaningful approximation. The CBOE VIX methodology uses
the prices of a range of out-of-the-money put and call options and Table I shows that this is exactly where EUA options are
most liquid. See Appendix Section A.1.B for details.

8Changes in the Carbon VIX measure changes in carbon price uncertainty as long as any carbon price variance risk
premium is constant. Below we show several properties of the Carbon VIX that are consistent with this assumption.

9Interpolation to horizon t′ requires a range of options with time-to-expiry below t′ and a range of options with time-to-
expiry above t′. Option volume is highest for short-maturity options. Since EUA options have quarterly expiry, there is an
expiry about every 90 days. Therefore, based purely on volumes, one would choose to interpolate to 90 days. However, we
observe occasional large price pressures in options in the days before their expiry. To avoid holding options into expiry we
interpolate to 120 days, such that option with approximately 29 days to expiry drop out of the measure and are replaced
with the the series of options that newly drops just below 120 days to expiry.
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impact carbon prices—within the next 120 days. In contrast, the Carbon VIX does not capture

uncertainty about information that is known not to be revealed within the next 120 days, like un-

certainty about a policy announcement that is scheduled in 200 days and where it is known that

information will not leak prior to that date. Such uncertainty does not appear to be a pervasive

feature of European carbon markets. Indeed, when we explore the term structure of carbon price

uncertainty in Section I.F below, we find only negligible differences across horizons. Thus, the

horizon of our uncertainty measures does not appear significant for our economic conclusions.

As a first check on our construction of carbon price uncertainties, Appendix Figure A.1 shows

that the Carbon VIX moves closely with realized EUA futures return volatility. Thus, the Carbon

VIX captures fundamental information about the return volatility of the underlying asset.

I.E. Carbon Option Implied Volatility.

As an alternative measure of carbon price uncertainty, we construct an index of Carbon Implied

Volatility (CIV) from the implied volatilities of EUA options. The implied volatility of option i,

denoted as σi, represents the level of volatility in the underlying asset’s returns that, when used

as an input in an option pricing model, produces the current market price of that option. All else

equal, a higher option price corresponds to a higher implied volatility. However, the specific change

in implied volatility resulting from a given change in option prices depends on the particular option

pricing model employed. Here, we use Black (1976)’s futures options pricing model to obtain EUA

futures options’ implied volatilities (see Appendix A.1.C for details).

Appendix Table A.3 shows EUA option’s implied volatilities by contract type. For example,

at-the-money EUA put options with between 31 and 120 days to expiry have an average implied

volatility of 52.5% over our sample period. That is, these options’ prices on average predict a

realized annualized volatility for EUA futures of 52.5%. To obtain one index from the range of

EUA option implied volatilities we follow Cremers et al. (2021) and calculate CIV 120,−
t (CIV 120,+

t )

as the average implied volatility of the two puts and two calls that, on day t, have just below (above)

120 days to expiry. Similar to the construction of the Carbon VIX, we linearly interpolate the two

measures to a constant 120 day horizon.

I.F. Exploring Carbon Price Uncertainty

The Carbon VIX and CIV have distinct advantages and drawbacks. Most notably, the Carbon

VIX methodology does not require a pricing model, but uses observed option prices from a wide

range of strike prices with varying liquidity. In contrast, the CIV approach is only based on

relatively liquid at-the-money options, but requires a model—in our case the one proposed in

Black (1976)—to infer implied volatilities. Figure 3a shows that, despite these differences, Carbon

VIX and CIV move closely together. They have near-identical levels and weekly changes have a

correlation of 0.96. As a result, we proceed by using Carbon VIX as our main proxy for carbon

price uncertainty, but show that our results are robust to analyzing CIV.

One application where CIV proves to be a useful auxiliary measure is in the study of the term

structure of carbon price uncertainty. Figure 3b displays CIV as a 120 day measure and a 360
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day measure, where we calculate CIV 360,−
t and CIV 360,+

t and interpolate. The two measures move

closely together in both levels and weekly changes. We conclude that the horizon of our measure

is not of central importance to the study of carbon price uncertainty. A 360 day Carbon VIX

would suffer from illiquidity in CV IX360,+
t , since we find little trading volume in out-of-the-money

EUA options with more than 360 days to expiry. This reinforces our decision to focus on a 120

day Carbon VIX as our main measure of carbon price uncertainty.

Figure 3: Carbon Implied Volatility

(a) Carbon VIX and Carbon Implied Volatility (b) Carbon Implied Volatility Term Structure

Note: Panel (a) shows the Carbon VIX and Carbon Implied Volatility. Panel (b) shows Carbon Implied Volatility for
horizons of 120 and 360 days.

We use these new measures to document several patterns regarding carbon price uncertainty.

Fact 1: Carbon price uncertainty is high over the entire sample. The average value

of the Carbon VIX over the sample is 54, implying that the market expects an annualized EUA

futures return volatility of about 54%. In comparison, the S&P 500 VIX index for US stock

market volatility has an average value of about 20, and reaches values as high as 50 only during

major market disruptions like the Global Financial Crisis of 2008 or the Covid Crash of 2020.

This finding is consistent with Benmir et al. (2023) who show that carbon prices have the highest

realized volatility across a range of commodities.

Realized EUA futures return volatility is about 45%. This difference between option implied

return volatility and realized return volatility suggests a positive variance risk premium that

raises option prices. This is consistent with the findings in Chevallier (2013), who find a positive

variance risk premium in EUA options, and Heston and Todorov (2023), who find such premia in

options across a range of asset classes. A positive variance risk premium in EUA options implies

that Carbon VIX and CIV overestimate the level of expected carbon futures volatility. Yet, the

average realized volatility is still substantial and our analysis of the real effects of carbon price

uncertainty rely on uncertainty changes, not levels. Variance risk premia likely do not change much

at the weekly frequency and so should not have large effects on weekly Carbon VIX changes.
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Table II: Carbon Market Summary Statistics

Mean Median Std AR(1) Skew Kurtosis

Carbon Price [EUR] 24.29 13.94 25.05 1.42 3.82
Carbon VIX [%] 54.42 53.81 10.43 0.16 2.99
Carbon Price Return [%] 0.88 0.66 5.73 0.65 0.21 2.82
Carbon VIX Change [ppt.] -0.11 -0.14 2.71 9.28 0.48 4.65

Note: Appendix Table A.1 defines the market variables. The data frequency is weekly. All market variables are winsorized
at percentiles 2.5 and 97.5. The AR(1) coefficient is multiplied by 100. The sample period is 2013.9 - 2022.12.

Table III: Market Correlations

Carbon Price Carbon VIX Equity Price Equity VIX Oil Price
Return Change Return Change Return

Carbon Price Return [%]
Carbon VIX Change [ppt.] -0.32
Equity Price Return [%] 0.19 -0.15
Equity VIX Change [ppt.] -0.17 0.11 -0.79
Oil Price Return [%] 0.17 -0.10 0.28 -0.25
Oil VIX Change [ppt.] -0.20 0.14 -0.41 0.44 -0.44

Note: Appendix Table A.1 defines the market variables. The data frequency is weekly. All market variables are winsorized
at percentiles 2.5 and 97.5. The sample period is 2013.9 - 2022.12.

Fact 2: Carbon price uncertainty varies substantially over time. The Carbon VIX has a

sizable weekly standard deviation of around 10 percentage points (see Table II). Figure 1 annotates

the Carbon VIX time-series with selected major market events, while Appendix Table A.5 includes

further details.10 Many of the large changes in Carbon VIX occur around events potentially

affecting the supply of certificates (e.g., the introduction of the Market Stability Reserve). For

example, Figure 1 shows high levels of carbon price uncertainty when the European Commission

discussed to postpone the auctioning of large quantities of emission allowances (so called back-

loading) in late 2013, a move that was followed by structural reform proposals to address the

excess supply of allowances in January 2014. In early 2016, the Carbon VIX increased by more

than 30 percentage points when the EU Commission noted that further tightening in supply would

be required to reach emission reduction targets consistent with the Paris Agreement adopted a few

weeks earlier. After corporate lobby groups and politicians called for more ambitious targets in line

with the Paris Agreement, the EU Parliament voted for large supply cuts of emission allowances

in December 2016, a time when the Carbon VIX reaches levels of more than 80%.

In addition to these spikes in carbon price uncertainty related to regulatory actions that in-

troduce uncertainty about the supply of EUAs, other spikes in carbon price uncertainty occur

during events that raise uncertainty about the future demand for EUAs. For example, the Car-

bon VIX spiked in March 2020 at the onset of the Covid-19 pandemic that led to large economic

uncertainties.

10We collect information about important market events around Carbon VIX spikes from the websites of the European
Commission and Carbon Pulse, a news service specialized on carbon pricing and climate change policies.
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Fact 3: Spikes in carbon price uncertainty are relatively persistent. For example,

the Carbon VIX spike in mid 2018 takes almost two years to resolve. Table II contains AR(1)

coefficients for the carbon market: A one percentage point increase in the Carbon VIX predicts

a 0.09 percentage point increase the following week. In contrast, the AR(1) coefficients for both

Equity VIX and Oil VIX changes are negative (see Appendix Table A.6). Thus, we see reversal for

Equity VIX and Oil VIX, but persistence for the Carbon VIX. Intuitively, persistent uncertainty

shocks are more likely to have perceptible real effects.

Fact 4: Carbon price uncertainty is distinct from other uncertainty measures. Table

III shows weekly correlations between changes in the Carbon VIX and changes in EU Equity VIX

and Oil VIX to be 0.11 and 0.14, respectively. These positive, but moderate, correlations highlight

that while carbon prices reflect the supply and demand for emission allowances, which could also

correlate with more general economic uncertainty or uncertainty in energy markets, carbon price

movements have a substantial component that is independent of other prices in the economy.

II. Carbon VIX and Firm-Level Decarbonization Investments

In the second part of the paper, we explore the real effects of carbon price uncertainty by studying

the effects of carbon price uncertainty on firms’ decisions to decarbonize. We first explore firms’

investment in decarbonization projects based on a large survey of firm-level emission abatement

activities. We use this data to show a negative relation between firms’ decarbonization invest-

ments and carbon price uncertainty at the annual level. In the subsequent section, we provide

complimentary high-frequency evidence from the stock returns of carbon solution providers.

II.A. Measuring Decarbonization Activities

Data. We work with survey data on firms’ decarbonization efforts collected by CDP (formerly

the Carbon Disclosure Project). CDP is a non-profit organization providing the largest survey-

based information on corporate climate action. CDP data serve as input for many commercial

climate data, rating, and index providers such as Trucost, MSCI, and Bloomberg (CDP, 2022).

Each year, CDP asks a large set of firms to file a detailed questionnaire that spans a wide

range of topics related to climate change. These topics include firm-level climate related risks and

opportunities, emission targets, historical emissions, and emission-abatement initiatives. CDP

covers firms globally across all major sectors. The criteria that determine the set of firms surveyed

are based on both environmental impact (i.e., whether the firm belongs to a high-emitting sectors

such as materials, energy, or industrials), and market capitalization (i.e., whether a firm is con-

stituent in one of the regional or global stock market indices). Firm-responses are voluntary and

disclosed information is not verified by CDP. By construction, survey respondents are relatively

large and disclosed information may be subject to selection bias (Bolton and Kacperczyk, 2023).

Over time, an increasing number of firms have started to report to CDP: between 2015 and 2023,

the number of respondents grew from fewer than 2,000 to more than 10,000 firms.11

11The actual number of respondents is substantially higher but many firms do not allow for public disclosure of their
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We focus our analysis on a part of the survey in which firms are asked to disclose detailed in-

formation on planned and implemented initiatives to reduce their carbon emissions.12 For projects

implemented during a reporting year, firms report an activity type (e.g., ‘low-carbon energy gen-

eration’ or ‘energy efficiency in production processes’), provide a text-based description of the

project, and indicate the required investment in their respective currency. This allows us to get

rich project-level insights on firms’ efforts to abate their carbon emissions. We sort firms’ type of

decarbonization activities into seven broad categories.13 We consider activity types in categories

low carbon energy, process efficiency, waste, building efficiency, and transportation and disregard

projects in categories company policy or behavioral change, and product design, as they are often

not associated with specific third-party goods or services.

Since 2015, CDP has asked respondents to distinguish decarbonization projects by scope of

emissions reduced. In other words, firms are asked to report whether an activity reduces di-

rect emissions from firm-controlled sources (scope-1), indirect emissions from the consumption of

purchased power (scope-2), or other indirect emission (scope 3). As we are interested in firms’

investments to reduce direct carbon emissions—the types of emissions for which EU-based firms

require EUAs—we limit our sample to implemented carbon abatement projects of scope-1 emis-

sions reported in CDP vintages 2015 to 2023. Out of 15,500 non-financial firms reporting to CDP

during this period, about 2,800 firms provide details on more than 12,500 projects dedicated to

abate their scope-1 emissions (see further details in Appendix Section A.2).

Descriptions of Decarbonization Investments. Appendix Table A.7 provides summary

statistics on the observed decarbonization projects—to our knowledge, these provide the most

comprehensive account of firm-level variation in decarbonization investments. The median in-

vestment project costs EUR 260k. Across all activities aimed at reducing scope-1 emissions, total

investment sums to EUR 639 billion, or 62% of all decarbonization investments reported to CDP.14

Panel A of Appendix Table A.7 reports emission abatement projects by country of firm origin.

Firms located in the U.S. or in Europe account for the vast majority of total decarbonization

investments by firms in our sample, both because the majority of reporting firms come from these

regions, and because investment in emission reduction projects reported by firms located in other

regions are substantially lower. For example, firms located in BRICS countries (Brazil, China,

India, Russia, and South Africa) account for 20% of all firms reporting scope-1 decarbonization

projects, but for less than 5% of total decarbonization investments.

Panel B details carbon abatement projects across industries. Almost half of all firms disclosing

scope-1 decarbonization projects belong to the manufacturing and materials sector. Their com-

responses. For example, in the 2023 vintage, 13,336 firms opted to not disclose their responses to the public including to
research institutions. Detailed information on how CDP collects and treats climate-related data is available at www.cdp.net

12Previous studies working with this data have mainly focused on CDP disclosures of firms’ overall climate risk assessment,
historical carbon emissions, or emission targets (Matsumura et al., 2014; Jung et al., 2018; Bolton and Kacperczyk, 2023;
Ilhan et al., 2023). Using additional CDP data on firms’ reported carbon abatement initiatives, Ioannou et al. (2016) find
emission target stringency is positively related to investment in such initiatives.

13Appendix Table A.8 provides stylized, GPT-generated examples of decarbonization project data and Appendix Table
A.9 details the mapping of decarbonization activity types to categories.

14Scope-2 and scope-3 emission abatement projects account for 14% and 5% of total decarbonization investment, respec-
tively. The remainder comprises decarbonization projects of hybrid scopes.
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bined decarbonization investments, however, only account for about 10% of the total investment

in emission abatement. In contrast, a relatively small number of firms in few industries are re-

sponsible for large parts of reported decarbonization investments. With about 70% of disclosed

decarbonization investments, utility and power firms play a dominant role in corporate decar-

bonization activities. The remaining share of decarbonization investment stems largely from firms

in the fossil fuel (6%), infrastructure (5%), transport (4%), and aviation (4%) industries.

Much of the observed variation in decarbonization investment across industries is likely driven

by differences in emission levels. Figure 4a therefore plots annual averages of industry-level de-

carbonization investment rates (the ratio of total decarbonization investment to total reported

scope-1 emissions) on the industry share of scope-1 emissions. Across industries, there is substan-

tial heterogeneity in investment rates for emission abatement activities. For example, the total

decarbonization investment of firms in the manufacturing and materials industry is on average 7

EUR per ton of reported scope-1 emissions. The utility and power sectors account for a similar

share in carbon emissions; however, with an average investment of 35 EUR per ton of emitted

carbon, they report a decarbonization investment rate that is an order of magnitude higher. Rel-

ative to other industries, decarbonization investment rates are also high in the infrastructure (53

EUR/tCO2e) and aviation (38 EUR/tCO2e) industries.

Figure 4b displays the share in decarbonization investment by type of decarbonization ac-

tivity across industries. Utility and power firms report the largest share in low carbon energy

investment. Firms in fossil fuels, manufacturing and materials sectors, often involved in energy

intensive industrial processes, largely rely on improvements in process efficiencies to abate their

scope-1 emissions. Decarbonization activities in buildings efficiency projects are most prominent

among firms in the services sector while firms in the transport sector largely invest in projects to

abate transportation-related emissions.

II.B. Carbon Price Uncertainty and Decarbonization Investments

We use the survey information on realized decarbonization investments to conduct a first ex-

ploratory analysis of whether firms invest less to decarbonize when uncertainty about future car-

bon prices is high (as discussed before, in times of high carbon price uncertainty an increased

option value incentivizes firms to delay their emission abatement initiatives.)

To analyse such an effect, we construct a panel of firm-level investments in scope-1 decar-

bonization activities. For each survey vintage, firms provide information on the reporting period

for which they disclose information to CDP, which are typically the twelve months coinciding with

the firms’ financial year. We use this information to infer the level of carbon price uncertainty

firms experienced during their respective reporting period. We additionally identify a set of firms

that are exposed to ETS carbon price uncertainty by exploiting a part of the survey where firms

report whether they are subject to certain carbon pricing schemes. This allows us to compare the

decarbonization investments of firms exposed to the EU ETS to firms without such compliance

obligations at times of varying levels of carbon price uncertainty.

Sample Description. We aggregate decarbonization investment at the firm-reporting period

level and remove observations where firms do not report valid ISIN-identifiers or reporting periods
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Figure 4: Decarbonization Investments

(a) Investment rate (b) Activity type

Note: Panel (a) plots annual averages of industry-level decarbonization investment rates on the average industry share
of scope-1 emissions. Decarbonization investment rates are the ratio of total decarbonization investment to total reported
scope-1 emissions. The bubble size corresponds to the number of firms reporting scope-1 decarbonization projects. Panel (b)
presents the share of investment by activity type. Data are from CDP vintages 2015–2023. Appendix Section A.2 includes
details on sample construction and Table A.9 outlines activity type classification.

(see Appendix Section A.2 for details). To focus on periods with higher coverage of CDP data and

meaningful levels of carbon prices, we limit the sample to decarbonization investments reported

during periods that start in 2018 at the earliest and end by 2022 at the latest. We end up with 67

distinct reporting periods. For each firm and reporting period, we calculate the average carbon

price and average Carbon VIX. Based on reporting-period-ends and ISIN-identifiers provided by

CDP, we additionally match firm financial data from Moody’s Orbis database.

Regression Specification. To test whether the level of carbon price uncertainty influences

decarbonization activities of firms exposed to carbon pricing, we estimate the following regression:

DIRi,τ = β1Exposurei × CarbonV IXτ + β2Exposurei ×Dτ + β3Xi,τ + ψi + δτ + ϵi,τ (1)

Our main variable of interest is DIRi,τ , the ratio of firm i’s total investment in decarbonization

activities to its reported scope-1 emissions in period τ . We assign Exposurei a value of one if

firm i disclosed that their operations are impacted by the EU ETS and reported corresponding

positive regulated emissions at any time during the sample.15 CarbonV IXt is the average level

of the Carbon VIX during reporting period τ . Similarly, vector Dτ includes average carbon and

oil prices over that period. Vector Xi,τ collects controls for firm characteristics including firm

size, leverage, profitability, and capital expenditure. To deal with the substantial right-skew in

reported investment amounts and other responses—some of which we believe to be the result of

data entry errors—we winsorize all variables at the 95th percentile. Measures of profitability and

capital expenditure, which are not bound at zero, are additionally winsorized at the 5th percentile.

15Survey responses on carbon price exposure are sometimes inconsistent over time. As EU ETS compliance is based on
business activity which typically does not change much over time, we suspect this is due to reporting inconsistencies.
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Table A.10 presents summary statistics on the various variables in the regression. We also add

firm and reporting period fixed effects denoted as ψi and δτ , respectively. In our most restrictive

specification, we replace δτ with reporting period × country of firm origin fixed effects. We cluster

standard errors at firm and reporting period levels.

Table IV: Carbon VIX and Decarbonization Investment Ratios

Dependent variable: Decarbonization investment rate (DIR)

(1) (2) (3) (4) (5) (6)

Exposure x Carbon VIX -0.495∗∗ -0.443∗∗ -0.535∗∗ -0.463∗∗ -0.395∗ -0.375∗

(-2.04) (-2.02) (-2.25) (-2.22) (-2.01) (-1.82)

Exposure x Carbon Price -0.046 -0.020 0.006 -0.068
(-1.29) (-0.51) (0.09) (-1.11)

Exposure x Oil Price -0.040 0.030
(-0.53) (0.47)

Firm FE Yes Yes Yes Yes Yes Yes

Period FE Yes Yes Yes Yes Yes No

Firm Characteristics No Yes No Yes Yes Yes

Country x Period FE No No No No No Yes

Observations 3,825 3,508 3,825 3,508 3,508 3,340
R2-Adjusted 0.47 0.45 0.47 0.45 0.45 0.43

Note: This table summarizes regression estimates of Equation (1). The dependent variable Decarbonization investment rate
is the ratio of a firm’s investment in decarbonization activities (EUR) to its scope-1 emissions (tCO2e) disclosed to CDP
for a given reporting period. Exposure is an indicator of carbon price exposure that is equal to one if a firm disclosed that,
throughout the CDP sample, any of the its operations is regulated by the EU ETS and zero otherwise. Carbon VIX, Carbon
Price, and Oil Price are averages of weekly levels of Carbon VIX (%), carbon prices, and oil prices (EUR) over the firm’s
reporting period, respectively. Table A.1 details definitions of all variables. The sample covers decarbonization investment
reported for periods between years 2018 and 2022. Summary statistics are reported in Table A.10. In parenthesis, we report
t-statistics based on standard errors clustered by firm and reporting period. *p<.1; **p<.05; ***p<.01

Table IV presents estimates of the regression in Equation (1). Column (1) suggest that firms whose

operations are exposed to ETS carbon prices report lower decarbonization investment rates than

non-exposed firms during times of higher carbon price uncertainty. This effect is not explained

by firm characteristics (column 2), carbon price levels (columns 3–4), oil price levels (column 5)

or reporting period × country-specific characteristics (column 6), with the statistical significance

bouncing around at the 5% level across specifications. A one standard deviation (or 4.5 percentage

points) increase in the Carbon VIX is associated with a 1.7–2.4 EUR/tCO2e decrease in the

decarbonization investment rates. Given that the average decarbonization investment rate is

about 18 EUR/tCO2e, this economic magnitude is substantial.

While the basic findings in Table IV are consistent with our hypothesis that carbon price

uncertainty reduces decarbonization investments, several factors complicate any confident inter-

pretation of these results. First, CDP does not provide standards or guidelines on the reporting

of decarbonization investment and does not verify their validity. As a result, it is difficult to

interpret granular firm-level outcomes due to potential differences in definitions, valuations, or

18



disclosure timings of emission reduction projects. For example, for projects spanning multiple

reporting periods some firms disclose investment in the final period while others split the amount

across all periods. Second, given that survey information is only available at annual frequencies

and the high-carbon-price sample consists of only five years, a clean identification of the effects

of carbon price uncertainty on decarbonization activity is challenging. Third, and perhaps most

importantly, we only observe decarbonization investments after a project is realized. The timing

of the investment decision, however, remains unclear, and it could be that some investments re-

ported in period τ may actually have been set in motion in prior periods. Since our mechanisms

links carbon price uncertainty to decision to invest, this complicates an interpretation of the the

results in Table IV.

These factors may explain why, while we detect effects of carbon price uncertainty on decar-

bonization investments, we do not find evidence for the expected positive relationship between the

level of carbon prices and decarbonization investments (this fact could be further explained by

the substantial correlation between carbon prices and carbon price uncertainty at these lower fre-

quencies). Consequently, our main empirical results move away from trying to understand realized

survey-reported decarbonization activities.

III. Carbon VIX and Stock Returns of Carbon Solution Providers

In this section, we present our preferred analysis of the effects of carbon price uncertainty on

decarbonization activities. The key idea is to first identify firms that primarily provide goods and

services that help other firms decarbonize—firms we call “carbon solution providers”. We then

study the stock returns of these firms as high-frequency proxies for the expected demand for decar-

bonization products and services, and thus expected aggregate decarbonization activities. When

carbon prices rise, polluters have more incentives to decarbonize. If investors expect spending on

decarbonization activities to increase, this should lead to higher stock returns for carbon solution

providers. Similarly, if higher carbon price uncertainty reduces polluters’ incentive to decarbonize

today, we should observe lower stock returns for carbon solution providers.

This approach has several advantages over our analyses of survey-reported decarbonization

investments in the prior section. First, analyzing stock returns allows us to exploit high-frequency

variation in both carbon prices and carbon price uncertainty. Second, firms’ decarbonization

investments take time to plan and implement. Thus, realized decarbonization investments would

reflect any impact of carbon prices only with a lag of uncertain length, making it hard to line up

realized investments and carbon price uncertainty over the period when the investment decision

was likely made. In contrast, market expectations of decarbonization investments should move

contemporaneously with carbon price uncertainty, and stock prices should immediately reflect

these shifts in expectations.

III.A. Identifying carbon solutions

To implement this approach, we first need to catalogue the goods and services demanded by firms

hoping to decarbonize their activities, before identifying “carbon solution providers” as firms
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offering these goods and services. To understand firms’ decarbonization activities and the goods

and services demanded to achieve them, we exploit textual descriptions of individual emission

abatement projects in the CDP data, where firms generally describe their decarbonization projects

in some detail. We collect more than 4,500 unique project descriptions, with an average length of

27 words and an interquartile range of 5 to 32 words.

We rely on the large language model GPT 3.5 Turbo version 0125 (henceforth GPT3.5) devel-

oped by OpenAI, to extract common carbon solutions from these descriptions of carbon abatement

projects. For every project description, GPT3.5 returns a keyword or at most 3-word phrase that

is most related to a product or service used to abate carbon emissions (see Appendix Table A.8

for stylized examples of project descriptions and corresponding carbon solutions identified by

GPT3.5).16 We consolidate carbon solutions identified by GPT3.5 by merging similar keywords,

providing the full term for acronyms and removing generic keywords.17 This process identifies

more than 1,250 unique carbon solutions.

Figure 5: Carbon Solution Keywords by Category

Note: Carbon solutions are based on the 50 most frequent keywords extracted from descriptions of decarbonization projects.
Larger font size corresponds to higher investment amounts. In some cases, a carbon solution occurs across multiple categories.
In this case, we assign the category with most frequent occurrence.

Figure 5 presents the 50 most frequent carbon solutions extracted from the reported decarboniza-

tion projects. Together, they represent more than 75% of total investments in scope-1 emission

16Specifically, we provide the following prompt to GPT3.5: ”You will be provided with unstructured text in triple quotations,
and your task is to find a single keyword or phrase of maximum 3 words that is most related to a measure or product to
reduce carbon emissions. In case the text is not related to carbon emission reduction, provide N/A as keyword. Here is the
text: [project description]” As the GPT3.5 system role carries a higher weight than the user role, we provide the prompt as
part of the system content and insert the project description starting with ”Here is the text:” as user content. To reduce
the risk of hallucination, we set the temperature parameter to 0.3.

17For example, the carbon solution carbon capture and storage (CCS) unifies keywords returned by GPT3.5 such as CCS,
carbon.*capture, co2.*capture, capture.*storage where .* indicates a placeholder of any length. We remove generic keywords
such as substitution or reduction that may not be helpful to detect specific carbon solution providers.
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abatement. The most popular decarbonization activities include investing in renewable energy

sources such as wind and solar, waste energy prevention, and fuel and vehicle replacement in the

transportation sector. However, firms also report a wide range of other industry-specific solutions

such as boiler upgrades, co-generation, or variable frequency drives. This granularity in carbon

solutions allows us to provide a rich characterization of firms’ emission abatement strategies.

III.B. Identifying carbon solution providers

We next identify firms that sell carbon solution products or services, and that would thus benefit

from increased investments into emission abatement. To do this, we collect firm-level textual

descriptions of firms’ main products and services from Moody’s Orbis database. We combine this

information with trade descriptions—a standardized description of a firm’s business model that

Moody’s collects from different sources—into a single text-based summary of a firm’s main business

activities. To focus on firms that would most benefit from decarbonization activities undertaken

in Europe, and for which we can observe stock returns, we limit our main sample to publicly listed

European firms. After removing short summaries with fewer than 10 words, we end up with 5,193

firm-level descriptions of associated business models and specific products offered, the average

length of these descriptions is about 45 words. For example, the description of Waga Energy SA is:

Products and services: “Landfill gas upgrading into grid-compliant biomethane renewable natural

gas (designs, builds, and operates landfill gas recovery, upgrades, and grid-injection projects).”

Business Model: “The Company is developing biomethane projects for the energy transition.”

Based on these firm descriptions, we identify firms providing carbon solutions to other enti-

ties. Since detecting carbon solution providers requires semantic understanding and contextual

awareness of text, we work with OpenAI’s latest GPT Model 4 (GPT4). For every description of

a firm’s business model and products, we ask GPT4 to identify whether this firm is a carbon solu-

tion provider satisfying two criteria. First, the firm’s primary business model must be to provide

carbon solutions. Second, the carbon solutions must be investment goods or service purchased by

other firms instead of retail products such as smart home appliances or electric scooters for which

purchase decisions are not usually driven by carbon prices. As examples, we provide GPT4 with

the 50 most common carbon solutions used by firms as identified in the CDP data.18 Appendix

Section A.3 provides further details on our approach, including the prompts given to GPT4.

GPT4 identifies 259 firms as providers of more than 600 carbon solutions.19 Figure A.2 presents

a word cloud of the 50 most frequent carbon solutions provided. Many of the goods and services

offered are similar to the carbon solutions extracted from project descriptions of decarbonization

investments. GPT4, however, also detects carbon solutions different to those included in the list

of example solutions. For example, GPT4 identifies energy storage solutions helpful to reduce

energy demand and supply imbalances or energy audits conducted to identify energy conservation

potential.

18Additionally, we provide a total of seven stylized examples of firm descriptions along with expected output (see Appendix
Table A.11). This few-shot prompting technique helps to produce reliable output and sort out certain edge cases such as
firms providing environmental solutions unrelated to the reduction of greenhouse gases.

19We provide a list of carbon solution providers, along with corresponding carbon solutions at www.carbonvix.org.
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Alternative Approaches to Identifying Carbon Solution Providers. We consider two

alternative approaches to identifying carbon solution providers. First, we make use of the firm-

level climate change exposure data from Sautner et al. (2023). This data is based on firms’

earnings conference calls and provides a measure of firms’ “climate opportunities” at the firm-year

level. The measure is available annually over the sample of 2013 to 2022 for on average around

700 European firms. We take the average of each firms’ climate opportunity exposure across the

sample and assign firms above the 90th percentile as climate opportunity firms.

We create a second alternative measure of carbon solution providers as the set of firms held by

ETFs that aim to profit from decarbonization. Specifically, we consider the January 2024 holdings

of the “European Green Deal UCITS ETF (EUGD)”. The ETF contains 50 European firms that

“could benefit from the European Green Deal, a landmark transaction enacted by the European

Commission to make Europe the first carbon neutral continent”. ETF holdings data make use of

the knowledge of portfolio managers, which can include soft-information that is not necessarily

contained in official reports and accounting metrics.

Characteristics of Carbon Solution Providers. To explore the characteristics of climate

solution providers, we obtain data from Jensen et al. (2023). We subset the sample to firms that

are listed in a country of the European Economic Area,20 and to observations for which we observe

all characteristics used in the regressions below. We obtain observations for almost 7,000 firms

(including 201 carbon solution providers) across 22 (two digit NAICS) industries in 29 countries.

Table V compares firm characteristics of carbon solution providers to the characteristics for the

full sample of firms. Carbon solution providers are relatively small, with an average equity market

capitalization of $1.5 billion, and relatively young, with an average age of about 24 year since

listing. At the same time, carbon solution provider’s equity is relatively highly valued, judging by

their market-to-book ratio; they also invest relatively more per book value of assets (see CAPX).

To provide further insight into the types of businesses that help others to decarbonize, Table

A.12 shows the full list of carbon solution providers. For example, “Aker Carbon Capture” helps

hard-to-abate industries install devices that capture CO2 emitted in their production process;

“Sweco AB” provides engineering and consulting services in the environmental space. The more

represented industries are manufacturing, utilities, and services.

Merging climate opportunity firm identifiers—those identifying firms based on the Sautner

et al. (2023) measure—with the stock return data yields a sample of 138 climate opportunity firms,

where 10 firms overlap with the sample of climate solution firms. Merging the ETF constituents

yields 43 firms with an overlap of seven. Columns two and three in Table V display the average firm

characteristics for the respective samples. Compared to our sample of ”carbon solution providers”,

the firms in the climate opportunity and ETF samples are relatively large, with an average market

capitalization around $14 billion; they are also relatively older, with an average age since listing

of about 33 years and they invest less per book value of assets.

20As of 2024 the European Economic Area consists of 30 countries, but we lack stock return data for Liechtenstein.
Appendix Table A.13 displays the list of countries in our sample.
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Table V: Firm Characteristics

Firms: Carbon
Solution

Climate
Opportunity

ETF All

Nr. Firms 201 138 43 6,831
Nr. Industries 15 15 6 22
Nr. Countries 18 16 12 29
Mean Market-Cap (Bil.) 1.5 13.6 14.8 2.1
Mean Market-to-Book Ratio 1.3 1.2 1.6 0.6
Mean Sales (Bil.) 1.7 20.0 14.3 1.0
Nr. Employees (1000s) 2.4 22.3 17.7 2.1
Age (Years since Listing) 23.9 33.6 33.8 27.6
Mean Assets (Bil.) 3.1 38.6 26.5 9.3
CAPX per Assets (0.001s) 56.7 45.3 46.6 48.3

Note: This table shows firm characteristics of carbon solution providers, climate opportunity firms and ETF constituents
in columns one, two and three, respectively. The three measures are described in subsection III.B. Column four contains
the full sample of publicly traded European firms. Averages are over all weekly observations of the respective sample. The
sample period is 2013.09 to 2022.12.

III.C. Carbon VIX and Stock Returns of Carbon Solutions Providers

Data Similar to the firm characteristics data, data on daily stock returns is also provided by

Jensen et al. (2023). All returns below are from the perspective of a European investor who does

not hedge currency risk. To alleviate concerns of illiquidity and slow information diffusion (Menzly

and Ozbas, 2010), we only consider firms with a (lagged) market capitalization above EUR 100

million, reducing our sample of carbon solution providers to 157. Further, our regression estimates

are based on weekly returns, which are less affected by illiquidity than daily returns.21

Regression Specification. We explore the effects of carbon prices and carbon price uncertainty

by estimating the following regression specification:

Ri,t = β1CarbSoli ×REUA
i,t + β2CarbSoli ×∆CarbonV IXt +Xi,t + ψi + δc(i)×ind(i)×t + ϵit (2)

where Ri,t is the return of stock i in week t, CarbSoli is an indicator whether firm i is a carbon

solution provider, REUA
t is the return of EUA futures and ∆CarbonV IXt is the weekly change

in the Carbon VIX. Xi,t contains controls to other market variables that we describe below. We

add fixed effects by security ID (ψi ) and country × industry × week (δc(i)×ind(i)×t). As a result,

our analysis compares firms that do and do not provide carbon solutions within the same country,

industry, and week (the industry classification is based on 2-digit NAICS codes). To reduce the

impact of outliers, all explanatory variables are winsorized at the 2.5th and 97.5th percentile. For

ease of interpretation, carbon returns and CVIX changes are normalized to have zero mean and

unit variance. Standard errors are double clustered by firm and country × industry × week.

Carbon price returns correlate with other European equity and energy market returns and

21We measure weekly returns by week number within a year. Thus, the first- and last week within a year, as well as weeks
containing holidays, are potentially shortened.
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carbon price uncertainty is naturally related to general economic uncertainty (the supply- and

demand-side arguments for such market relations are described in section I). Consequently, one

might be worried that carbon solution providers are just more exposed to general equity- or

energy market uncertainty, and that β1 and β2 would at least in part pick up such relationships.

To alleviate such concerns, we control for stocks’ exposure to equity and energy markets via fixed

effects of week × lagged beta deciles, where betas are relative to general equity returns, equity

VIX changes, oil price returns and oil VIX changes.22 Thus, our regression estimates capture the

different exposure of climate solution providers vs. other firms, that is not explained by covariance

with general equity or energy markets.

Results. Table VI provides regression estimates of Equation (2). Columns (1) and (5) employ

our baseline carbon-solution-firm identification, thus the sample consists of firms where we obtain

firm descriptions from Orbis. Columns (2) and (6) employ the identification based on firms’ climate

opportunity exposure from Sautner et al. (2023), thus the sample consists of European firms in

this dataset during at least one sample year. Columns (3) and (7) emplow ETF holdings data,

thus the sample consists of all European listed securities in the Jensen et al. (2023) dataset. All

measures are described in detail above. Columns (4) and (8) identify a firm as a carbon solution

provider if it is identified as such by one of our three methods. Similar to columns (3) and (7),

it uses the broadest available sample of firms. Columns (1) to (4) contain observations over the

years from 2018 to 2022, the sample where carbon prices in the EU ETS are relatively high (see

Figure 2a). Columns (5) to (8) contain observations over the low-carbon-price years, 2013 to 2017.

Column (1) shows that, relative to other firms, stock returns of carbon solution providers move

more positively with carbon price returns and more negatively with carbon uncertainty changes.

This finding suggests that when carbon price uncertainty rises, polluters have a lower incentive

to invest into decarbonization, therefore expected spending on decarbonization falls, which leads

to lower stock returns for carbon solution providers. Similarly, it suggests that expected decar-

bonization spending increases when carbon prices increase.23 Columns (2) to (4) show that our

estimates are robust to the method of identifying of carbon solution providers.

Importantly, the effect of increases in carbon price uncertainty on our proxy for expected

decarbonization is of similar magnitude to the effect of declines in carbon prices. A one standard

deviation increase in the carbon price return is associated with a 12.9 basis points relative increase

in the stock returns of carbon solution providers, while a one standard deviation higher increase

in the Carbon VIX is associated with a 15.7 basis points relative decrease. Put differently, a one

percentage point increase in carbon price uncertainty has a similar impact on carbon solution

providers’ stock returns as a EUR 1.12 decline in the carbon price.24

22We estimate these betas with two separate multivariate regressions. We regress security level stock returns in excess of
the risk-free rate on an intercept, the equity market return, and equity VIX changes. We run a similar regression for oil
market returns and oil VIX changes. We use 52 weekly returns for these regressions and, for the fixed effects, we lag the
resulting betas by two weeks. By estimating the betas over rolling windows we allow for time-varying exposures.

23One alternative interpretation is that carbon prices and carbon price uncertainty represent discount rate news that
are specific to carbon solution providers. We find no evidence for that. Another alternative is that our regressions suffer
from reverse-causality: carbon solution providers stock returns drive carbon prices, instead of the other way around. This
explanation seems unlikely, too.

24We arrive at this approximation via −15.7
12.9

× 2.4
2.6

= −1.12, where 2.6 is the weekly standard deviation of Carbon VIX
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Table VI: Regression: Carbon Solution Provider’s Stock Returns

2018 - 2022: High Carbon Price 2013 - 2017: Low Carbon Price

(1) Sol. (2) Opp. (3) ETF (4) All (5) Sol. (6) Opp. (7) ETF (8) All

Carbon Solutions 12.9∗∗ 8.5∗ 10.1∗ 9.3∗∗∗ 1.0 2.5 1.4 1.6
× Carbon Price Return (2.02) (1.78) (1.82) (2.59) (0.16) (0.46) (0.23) (0.40)

Carbon Solutions -15.7∗∗ -14.8∗∗ -15.4∗∗ -13.8∗∗∗ 5.1 3.3 -6.2 -0.3
× Carbon VIX Change (-2.18) (-2.48) (-2.23) (-3.50) (0.86) (0.66) (-1.23) (-0.08)

Date × Beta Equity Y Y Y Y Y Y Y Y

Date × Beta Equity VIX Y Y Y Y Y Y Y Y

Date × Beta Oil Y Y Y Y Y Y Y Y

Date × Beta Oil VIX Y Y Y Y Y Y Y Y

Stock ID (Firm) Y Y Y Y Y Y Y Y

Date × Ind × Cntry Y Y Y Y Y Y Y Y

Observations 335,668 182,616 453,246 453,246 264,589 100,831 417,782 417,782
R2-Adjusted 0.32 0.42 0.33 0.33 0.21 0.33 0.21 0.21

Note: This table presents regression estimates of equation (2). We regress weekly stock returns of European firms on the
interactions between a carbon solution indicator and carbon price returns as well as the interaction of the carbon solution
indicator and Carbon VIX changes. We apply four different measures for identifying carbon solution firms, as identified
in subsection III.B. Columns (1) and (5) use our novel survey evidence as described in . Columns (2) and (6) use data
from Sautner et al. (2023). Columns (3) and (7) use ETF constituents. Columns (4) and (8) use the union of these three
measures. Each sample consists of the firms for which the respective measure is available for the firm year. Columns (1) to
(4) represent the high carbon price Sample 2018.01 to 2022.12. Columns (5) to (8) represent the low carbon price Sample
2013.09 to 2017.12. We add controls for exposure to both equity and energy markets, via fixed effects for week × lagged
beta deciles. Further, we add fixed effects by stock ID (firm) and week × industry × country. Standard errors are double
clustered by firm and week × industry × country.

Columns (5) to (8) show the same regressions, but estimated over the period 2013-2017, when

average carbon prices were very low. Where carbon price levels are negligible, neither carbon price

returns, nor carbon price uncertainty changes should have an impact on polluters’ decarbonization

decisions and thus on solution providers’ stock returns. For example, when EU ETS carbon

prices were around EUR 7 per ton of carbon emissions, BloombergNEF (2015) reported that “to

date, [the carbon price] has simply been too volatile and weak to bank investments on.” As a

result, estimating the regressions over this period provides a ‘placebo test’ in which we would not

expect to find strong relationships between carbon price returns and uncertainty and expected

decolonization investment. Indeed, we find all estimates over this period to be small in magnitude

and statistically insignificant.

Graphical Representation of Results. To obtain a graphical representation of our results

from Table VI, we extract carbon solution providers’ residual returns by estimating the following

changes over 2018 - 2022 and 2.4 is the weekly standard deviation of carbon price returns in EUR, which we obtain as the
product of the standard deviation of carbon price returns (0.06) and the average carbon price (EUR 40).
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Figure 6: Expected Decarbonization Investment

(a) Carbon Price (b) Carbon VIX

Note: Panel (a) plots the equal-weighted average residual returns of carbon solution providers by ventiles of the weekly
EU ETS carbon emissions price return. Panel (b) plots the Carbon VIX change on the horizontal axis. Carbon solution
providers are identified as described in Section III.A and residual returns are extracted as specified in regression (3) to
provide a high-frequency measure of expected decarbonization investments. The sample period is 2018.01 to 2022.12.

regression specification at the weekly level:

Ri,t = Xi,t + ψi + δind(i)×c(i)×t + ϵit. (3)

Carbon solution providers’ residual returns are the ϵit of firms that we identify as carbon solution

providers in Subsection III.B. They capture each firms’ weekly stock return that is not explained

by security fixed effects (ψi), country × industry × week fixed effects (δc(i)×ind(i)×t), or controls

for equity- and energy-market betas (Xi,t). As a result, carbon solution providers’ residual returns

capture additional news about these firms’ cash flows, for example from changes in expected

decarbonization investments. Figure 6 provides a binscatter plot of the average residual returns

against carbon price returns and Carbon VIX changes. The significantly negative relationship

between Carbon VIX changes and carbon solution providers’ residual returns is visible in the right

panel of the figure. Beyond visualizing our regression results, an additional benefit of extracting the

residual returns is that these returns might be useful in related research: carbon solution providers’

residual returns should covary with any variable that impacts (decarbonization) investments into

the goods and services provided by our carbon solution firms. We provide the residual returns at

www.carbonvix.org.

Robustness Tests. The finding that, relative to other stock returns, carbon solution provider’s

stock returns covary more negatively with changes in carbon price uncertainty, is robust to various

adjustments to the regression specifications. Table VII displays the results of six robustness checks,

where carbon solution providers are identified as in column (4) of Table VI.

Column (1) uses changes in Carbon Implied Volatility instead of changes in the Carbon VIX to

proxy for innovations in carbon price uncertainty. Column (2) does not exclude firms below $100
million lagged market capitalization. Column (3) does not winsorize the right-hand-side variables.
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Table VII: Regression: Carbon Solution Stock Returns, Additions

(1) (2) (3) (4) (5) (6)

Carbon Solutions 10.23∗∗∗ 9.48∗∗ 8.63∗∗ 1.65∗ 13.42∗∗

× Carbon Price Return (2.86) (2.23) (2.22) (1.73) (2.29)

Carbon Solutions -10.77∗∗ -14.2∗∗∗ -2.22∗∗ -14.86∗∗∗

× Carbon VIX Change (-2.30) (-3.02) (-2.30) (-3.79)

Carbon Solutions -14.50∗∗∗

× CIV Change (-3.72)

Carbon Solutions 7.39∗∗∗

× Carbon Price Change (EUR) (2.89)

Carbon Solutions -7.61∗

× Carbon VIX Change (EUR) (-1.82)

Carbon Solutions -4.99
× Carbon Vol. Change (-0.72)

Fixed Effects Y Y Y Y Y Y

Sample period ’18 - ’22 ’18 - ’22 ’18 - ’22 ’18 - ’22 ’18 - ’22 ’13 - ’22

Firm Size Restriction Y N Y Y Y Y

Frequency week week week day week week

Winsorized RHS Y Y N Y Y Y

Observations 453k 889k 453k 2,060k 453k 871k
R2-Adjusted 0.33 0.10 0.33 0.25 0.33 0.29

Note: This table presents regression estimates of Equation (2). We regress weekly stock returns of European firms on a
carbon solution firm indicator interacted with various variables. The carbon solution firm indicator captures the union of our
our three measures. Columns (1) to (3) contain our baseline regression, but (1) uses CIV changes instead of CVIX changes,
(2) does not subset firms by market capitalization, (3) does not winsorize independent variables, (4) uses all variables at the
daily level, (5) adds an interaction with the change in lagged realized carbon return volatility and (6) excludes the interaction
with Carbon VIX changes. Column (7) contains the full 2013 to 2022 sample and interacts independent variables with the
lagged carbon price. We add controls for exposure to both equity and energy markets, via fixed effects for date × lagged
beta deciles (see Table VI for details). Further, we add fixed effects by stock ID (firm) and date × industry × country.
Standard errors are double clustered by firm and week × industry × country.

Our core results are highly robust to these variations. Column (4) estimates regression (2) at the

daily instead of the weekly level. While stock returns are more noisy at higher frequencies, the

basic relationships survive in this sample. The smaller absolute coefficients of the point estimates

are largely due to the smaller standard deviations of daily vs. weekly returns.

Berger et al. (2020) show that many relationships that are often attributed to changes in

expected volatility are in fact related to changes in realized volatility, which comoves with expected

volatility. To see whether this might also be the case in our setting, column (5) also interacts the

carbon solution firm indicator with the weekly change in realized past carbon price return volatility,

measured as the daily volatility over the previous 120 days. The insignificant coefficient on realized

volatility changes in column five shows that, in our setting, it is truly uncertainty about future

carbon prices that affects the stock returns of carbon solution providers.
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Finally, column (6) is estimated over the full sample (2013 to 2022) and replaces carbon price

returns (in %) with carbon price changes (in EUR) and Carbon VIX changes (in ppt.) with

Carbon VIX changes (in EUR), approximated as the product of Carbon VIX and carbon price.

We find a significant relationship between carbon prices and carbon price uncertainty in terms of

Euros, which explains why we find predictability only in the high-price sample of Table VI.

IV. Conclusion

Pricing the emission of carbon is a key policy to incentivize firms to decarbonize their operations.

A common policy tool is to limit aggregate emissions via tradable carbon emission permits. The

resulting equilibrium carbon price is subject to uncertainty about future supply and demand

for emission permits. This paper presents new evidence on carbon price uncertainty in the EU

ETS, the globally largest cap-and-trade system. We construct a novel measure of carbon price

uncertainty: the Carbon VIX and document new related facts. Using survey and stock market

information on decarbonization investment, we provide evidence that carbon price uncertainty

delays firms’ decisions to decarbonize their operations.

Our results have important policy implications. Policy makers may want to consider the

detrimental effects of uncertainty on achieving decarbonization objectives in their decision-making

process. Uncertainties could be reduced institutionally—for example, by enhancing clarity about

future policy changes—or via market-based mechanisms such as carbon price floors or ceilings.

We leave to future research to which extent such measures improve policy objectives of carbon

pricing schemes. To aid future research, we make our high-frequency measures of carbon price

uncertainty and expected decarbonization investments available at www.carbonvix.org.
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Colmer, Jonathan, Ralf Martin, Mirabelle Muûls, and Ulrich J Wagner, 2024, Does pricing carbon

mitigate climate change? firm-level evidence from the european union emissions trading scheme,

The Review of Economic Studies 1–40.

Cremers, Martijn, Matthias Fleckenstein, and Priyank Gandhi, 2021, Treasury yield implied

volatility and real activity, Journal of Financial Economics 140, 412–435.

DEHSt, 2023, German Auctioning of Emission Allowances Annual Report 2022 .

Dixit, Avinash K, and Robert S Pindyck, 1994, Investment under uncertainty (Princeton university

press).

EnBW, 2018, Global companies call for a minimum carbon price, Press Release: https://www.

enbw.com/company/press/global-companies-call-for-a-minimum-carbon-price.html

Accessed 2024-05-17.

ESMA, 2022, Emission allowances and associated derivatives - Final Report .

30

https://www.cdp.net/en/articles/media/More-than-680-financial-institutions-call-on-nearly-10400-companies-to-disclose-environmental-data-through-CDP
https://www.cdp.net/en/articles/media/More-than-680-financial-institutions-call-on-nearly-10400-companies-to-disclose-environmental-data-through-CDP
https://www.enbw.com/company/press/global-companies-call-for-a-minimum-carbon-price.html
https://www.enbw.com/company/press/global-companies-call-for-a-minimum-carbon-price.html


European Commission, 2023a, Communication from the commission publication of the total num-

ber of allowances in circulation in 2022 for the purposes of the market stability reserve under

the eu emissions trading system established by directive 2003/87/ec 2023/c 172/01.

European Commission, 2023b, Report from the commission to the european parliament and the

council on the functioning of the european carbon market in 2022 pursuant to articles 10(5) and

21(2) of directive 2003/87/ec, Technical report.

Flachsland, Christian, Michael Pahle, Dallas Burtraw, Ottmar Edenhofer, Milan Elkerbout, Car-

olyn Fischer, Oliver Tietjen, and Lars Zetterberg, 2020, How to avoid history repeating itself:

the case for an eu emissions trading system (eu ets) price floor revisited, Climate Policy 20,

133–142.

Fried, Stephie, Kevin Michael Novan, and William Peterman, 2021, The macro effects of climate

policy uncertainty .

Fuss, Sabine, Daniel JA Johansson, Jana Szolgayova, and Michael Obersteiner, 2009, Impact of

climate policy uncertainty on the adoption of electricity generating technologies, Energy Policy

37, 733–743.

Gao, Lin, Steffen Hitzemann, Ivan Shaliastovich, and Lai Xu, 2022, Oil volatility risk, Journal of

Financial Economics 144, 456–491.

Gavriilidis, Konstantinos, 2021, Measuring climate policy uncertainty, Working Paper .

Ginbo, Tsegaye, Luca Di Corato, and Ruben Hoffmann, 2021, Investing in climate change adap-

tation and mitigation: A methodological review of real-options studies, Ambio 50, 229–241.

Golub, Alexander A, Ruben N Lubowski, and Pedro Piris-Cabezas, 2020, Business responses to

climate policy uncertainty: Theoretical analysis of a twin deferral strategy and the risk-adjusted

price of carbon, Energy 205, 117996.

Green, Jessica F, 2021, Does carbon pricing reduce emissions? a review of ex-post analyses,

Environmental Research Letters 16, 043004.

Griffin, John M, and Amin Shams, 2018, Manipulation in the vix?, The Review of Financial

Studies 31, 1377–1417.

Heston, Steven L, and Karamfil Todorov, 2023, Exploring the variance risk premium across assets,

Unpublished working paper .

Ilhan, Emirhan, Philipp Krueger, Zacharias Sautner, and Laura T Starks, 2023, Climate Risk

Disclosure and Institutional Investors, The Review of Financial Studies 36, 2617–2650.

Ioannou, Ioannis, Shelley Xin Li, and George Serafeim, 2016, The effect of target difficulty on

target completion: The case of reducing carbon emissions, The Accounting Review, 91, 1467–

1492.

31



Jensen, Theis Ingerslev, Bryan Kelly, and Lasse Heje Pedersen, 2023, Is there a replication crisis

in finance?, The Journal of Finance 78, 2465–2518.

Jung, Juhyun, Kathleen Herbohn, and Peter Clarkson, 2018, Carbon risk, carbon risk awareness

and the cost of debt financing, Journal of business ethics 150, 1151–1171.

Kaboski, Joseph P, 2005, Factor price uncertainty, technology choice and investment delay, Journal

of Economic Dynamics and Control 29, 509–527.

Känzig, Diego R, 2023, The unequal economic consequences of carbon pricing, Working Paper

31221, National Bureau of Economic Research.
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Carbon VIX: Carbon Price Uncertainty
and Decarbonization Investments

Appendix

Section A.1 contains further details on markets data and the construction of variables. Section A.2
describes the construction of the CDP-survey sample. Section A.3 includes additional informa-
tion on firm descriptions and GPT-prompting for the identification of carbon solution providers.
Section A.4 provides supplementary tables and Section A.5 provides additional figures.

A.1. Markets

A.1.A. EU ETS Derivatives — Additional Information

We obtain daily settlement prices of futures on EU carbon emission allowances (EUA) traded
on the London Intercontinental Exchange (ICE) from Bloomberg. For carbon prices we consider
the closest-to-maturity December-futures contract. December EUA futures are typically the most
liquid and close-to-expiry contracts are less sensitive to time-varying risk premiums (Känzig, 2023;
Baumeister and Kilian, 2016).

We obtain daily data on EUA futures options from IVolatility. The sample is 2013.09 to
2022.12. The data include contract details, like expiry-date and strike price, as well as the daily
settlement price, volume and open interest at the contract level. We use the daily settlement price
as the options price. The full sample includes 4,281,336 observations. We exclude options with a
negative time value, which we observe for 3.2% of the data.

Between 2019 and 2020, the EUA options’ daily settlement style changed. Before 2019.03,
EUA futures options on ICE were settled in the standard way: at the time of purchase, the
options’ buyer pays the purchase price to the options’ seller. The options seller has to maintain
a margin account with the clearing house to reduce counterparty credit risk. After 2020.12, EUA
futures option on ICE are settled similar to futures contracts: at the time of purchase, no money
is transferred between buyer and seller. Instead, the purchase price and any option payoff are
aggregated and paid at option expiry. In the meantime, both option buyer and seller maintain
a margin account with the clearing house. Between 2019.03 and 2020.12 both types of options
traded in parallel. We adjust option prices for futures-style settlement by discounting them at the
risk-free rate. Alternatively, we discount option prices at the futures yield. The difference between
the two approaches is not perceptible in CVIX or CIV.

A.1.B. The Carbon VIX — Additional Information

Following CBOE (2023) we construct the Carbon VIX as

CarbonV IX2
t =

2

T

∑
i

∆Ki

K2
i

eRTQ (Ki)−
1

T

[
F

K0

− 1

]2
, (A.1)

where CarbonV IX2
t is the squared level of the Carbon VIX at time t, T is the time to expiry (in

years) for the respective options, F is the option-implied forward price, K0 is the first strike price
equal to—or otherwise immediately below—F , ∆Ki is the difference between two strike prices
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(EUR 0.5 for EUA futures options), R is the risk-free interest rate to expiration, and Q(Ki) is the
options’ price. See CBOE (2023) for a step-by-step guide through the VIX methodology. CBOE
obtains option prices as the mid-point between each option’s bid- and ask quote. We use the
option’s daily settlement price instead.

The Carbon VIX portfolio payoff is equal to EUA futures’ variance if an infinite number of
options strikes is available. EUA Options strike price interval is EUR 0.5 and we find options
liquidity that extends beyond 30% moneyness. Thus, at least in the recent sample, there are more
than 80 liquid strike prices available to form the Carbon VIX portfolio.

We apply equation (A.1) on the range of EUA options with just below (above) 120 days
to expiry to obtain CarbonV IX120,−

t (CarbonV IX120,+
t ). Subsequently, we linearly interpolate

between the two measures via

CarbonV IXt = CarbonV IX120,−
t +

CarbonV IX120,+
t − CarbonV IX120,−

t

τ 120,+t − τ 120,−t

× (120− τ 120,−t ),

(A.2)

where τ 120,−t (τ 120,+t ) is the time to expiry, in number of calendar days, for the options with just
below (above) 120 days to expiry. Thus, we obtain CarbonV IXt as a daily uncertainty measure
with a constant 120 calendar day horizon throughout our sample.

A.1.C. Carbon Option Implied Volatility — Additional Information

We construct an alternative measure of carbon price uncertainty from the implied volatilities of
at-the-money options. We call this measure “Carbon Implied Volatility´´ (hereafter, CIV). In
constructing the measure we follow Cremers et al. (2021): for every day t, among the options with
just below 120 days to expiry, we pick the put-call option pair whose strike price is just below
the current spot price of the December EUA futures contract and the put-call option pair whose
strike price is just above the current spot price of the December EUA futures contract. We denote
the equal-weighted average over those four options’ implied volatilities as CIV 120,−

t . The same
procedure for the options with just above 120 days to expiry yields CIV 120,+

t . To obtain CIVt we
linearly interpolate between CIV 120,−

t and CIV 120,+
t following equation A.2.25

We calculate EUA options’ implied volatilities via the options pricing model from Black (1976),
which is a common choice for the pricing of options on futures contracts. Standard option pricing
models, like the model applied here, cannot be solved for σt analytically. That is, there is no
formula to link the current market price of the option Pt to the expected return volatility of the
underlying σt that justifies this price. Instead, we find σt numerically.

Relative to CVIX, CIV has the advantage of being based on implied volatilities, the expected
underlying volatility (under the model assumptions). This is what we want. The disadvantage is
that implied volatilities require an option pricing model. Thus, CIV is not model-free. Another
distinction is that CIV is based only on at-the-money options, while VIX-based measures can
be sensitive to option price activity in the tails (Griffin and Shams, 2018). Our central results
are robust to the measurement of carbon price uncertainty via either CVIX or CIV, and the two
measures display a correlation above 98% in levels and 96% in weekly changes.

25If an options chain has exactly 120 days to maturity we choose only that chain and thus calculate CIV as the average
of the four implied volatilities.
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A.1.D. Other Data — Additional Information

We obtain data on European risk-free rates from OptionMetrics.
We obtain data on stock prices and firm characteristics from Jensen et al. (2023). To obtain

large exposure to European economic activity we subset to securities that are listed in a country of
the European Economic Area as of January 2024. This subsetting yields a sample of 29 countries
(there are no data for Liechtenstein). Table A.13 lists the countries in our sample. We follow
the ”suggested screens” by Jensen et al. (2023), which involves subsetting to common stocks,
primary securities and prominent exchanges. Further, we subset to firms with a lagged equity
market capitalization above $100 million. We consider only observations where all necessary
characteristics are available for the respective period. We drop 162 weekly returns above 1000%
or below -1000%.

We obtain data on equity indices and energy markets from Bloomberg. Table A.1 provides
the tickers. We measure European equity index returns via the Euro Stoxx 50 return index. One
major advantage of the Euro Stoxx 50 is that it functions as the underlying for extremely liquid
options contracts, which in turn yield a widely used uncertainty index: the VStoxx. The VStoxx
employs the VIX method to measure expected return volatility in the Euro Stoxx 50. We measure
oil prices via Bloombergs generic Brent futures contract and oil price uncertainty via the OVX oil
price index. The OVX index employs the VIX method and is based on options on a U.S. oil ETF.

Where necessary, market returns are translated from USD to EUR via equation A.3:

ReturnEUR
t+1 =

Pt+1 × EURt+1

USDt+1

Pt × EURt

USDt

, (A.3)

where ReturnEUR
t is the respective variable’s return in Euros, P i

t+1 is the asset price at the end of

period t + 1 and USDt+1

EURt+1
is the exchange rate between USD and EUR at the end of period t + 1.

Thus, all returns are from the perspective of a European investor investing in Euro terms.

A.2. Survey data

We construct a sample of firms’ self-disclosed decarbonization initiatives from survey data collected
by CDP. We combine survey vintages 2015—when CDP first asked to report decarbonization ac-
tivities by emission scope type—through 2023. CDP provides unique firm-identifiers for each
response that allows us to track firm-level information across survey vintages. We collect informa-
tion on firms’ country of origin, industry, sector, and ISIN (CDP items country, primary industry,
primary sector, and primary ISIN). CDP’s industry classification changed after its 2017 survey.
We use the more granular industry information provided from 2018.26 Throughout our analysis,
we remove firms in the financial services sector. In case firms’ country or industry classifications
change across survey vintages, we assign the most frequent provided information.

For information on investment in decarbonization projects, we collect firms’ disclosures on
initiatives to reduce their carbon emissions. In each annual survey vintage, respondents are asked
to “provide details on the [emissions reduction] initiatives implemented in the reporting year in the
table below”. Corresponding details are provided in CDP sub-question CC3.3b for vintages 2015–

26In few cases where firms stopped reporting to CDP after 2017, we assign industries based on the most common mapping
of old to new industries derived from firms reporting in vintages of both before and after 2017.
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2017 and C4.3b for vintages 2018–2023. Among others, firms can choose to provide an activity
type, the emission scope for which reductions occur, the required investment, a textual description
of the initiative, and a comment section to detail additional information.

We first sort firms’ initiatives in categories of decarbonization activities. The category of
firms’ decarbonization activities is based on their provided information in CDP column “activity
type”. In 2020, CDP renamed the field to “initiative category & initiative type g”. Most survey
respondents select the type of initiative based on pre-defined categories but also have the option
to specify individual initiative types. In addition, the categories defined by CDP change slightly
across survey vintages. For example, the definitions of “Energy efficiency: Building services” and
“Energy efficiency: Building fabric” merged to “Energy efficiency in buildings” in 2020. Based on
these definitions, we sort initiative types into seven broad categories: low carbon energy, process
efficiency, waste, building efficiency, transportation, company policy or behavioral change, and
product design. Table A.9 presents a mapping of CDP activity types to corresponding categories.
Where possible, we also add initiative types provided via free-text based on a simple search of
related keywords. We cannot assign a category for < 1% of initiatives categories; they become
other.

Firms often provide the required investment amount in their respective currency. We convert
investment values into EUR using annual exchange rates of 41 major currencies from the OECD
(2023) exchange rates database. We match values on currencies specified by firms (CDP sub-
question C.04) based on the year prior to the survey publishing year which marks the end of the
reporting period for the vast majority of respondents. We disregard investments in currencies
that we are unable to match to exchange rates. The most frequent carbon abatement investments
not matched to exchange rates are denominated in TWD, THB, PHP and MYR. As CDP does
not validate any information reported, the investment amount provided may be prone to errors.
We therefore remove extreme outliers where the investment amount of individual projects exceeds
50% of total industry-level investment. This removal affects a total of four projects or less than
0.1% of all scope-1 projects with positive investment value.

A.2.A. A panel of decarbonization investment

We construct a firm-level panel of decarbonization investment by aggregating individual project
investment at the firm and survey year levels. Within every survey vintage and for each firm,
we retrieve the period for which the firm is reporting data (CDP sub-question C02.2 for survey
vintages 2018–2023).27 In case a firm provides data for multiple reporting periods, we use the most
recent one. We remove observations with invalid reporting periods where (1) reporting period start
is after the reporting period end (2) the length of the reporting period is outside of the 250–450
day range (3) the year of the reporting date-end is greater than the year in which the survey was
conducted (4) the reporting period ends more than three years before the year in which survey
was conducted (5) the reporting period in a given survey vintage overlaps by more than 95 days
with the reporting period of the previous year’s survey. In total we remove 123 observations, fewer
than 1% of all firm-year observations.

Next, we construct Exposurei, an indicator of firms’ exposure to carbon pricing that is based on
a CDP question asking to “select the carbon pricing regulation(s) which impacts your operations”
(sub-question C11.1a). The indicator is equal to one if the answer includes European Union ETS

27In our panel of decarbonization investments, we only consider data reported for years 2018–2023, see Section II in the
main text.
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or EU ETS and the firm disclosed corresponding positive verified Scope-1 emissions (sub-question
C11.1b) in any of the CDP vintages.28

Finally, we merge firm-level financial data from Moody’s Orbis database via the end date of
the reporting period in CDP and the financial year closing date in Orbis as well as ISIN-identifiers
provided in both datasets.29 Orbis includes financial information at different consolidation levels
from either annual reports or local registry filings. At the firm level, we choose data sources ranked
by (1) highest data availability, (2) consolidated statements—as CDP disclosures are mainly based
on consolidated information—and (3) annual report filings. After obtaining the Orbis items total
assets, tangible fixed assets, long term debt, EBIT, and depreciation and amortization our final
panel consists of 4,098 non-missing firm-year observations.

A.2.B. Project descriptions

To identify common climate solutions through carbon abatement, we collect textual project de-
scriptions of implemented carbon abatement initiatives reported in CDP vintages 2015–2023.30

We only consider scope-1 emission reduction initiatives with positive investment amounts. The
project descriptions are primarily based on firms’ responses to “description of initiative,” where
firms typically provide a high-level summary on the nature of the emission reduction activity. From
2018, CDP allows to select from some pre-defined descriptions such as solar hot water or landfill
methane capture in addition to a free-text response option. From the 2020 vintage, CDP renamed
“description of initiative” to “initiative category & initiative type” while preserving similar pre-
defined descriptions and free-text response options. Firms make extensive use of the possibility to
individually describe their decarbonization activities. About 40% of all project descriptions are
provided via free text. In some cases firms provide no description of initiatives or invalid inputs
such as empty strings. If firms provide a free-text response in the comment section, we instead
rely on the comment for the corresponding project description. Table A.8 provides stylized, GPT-
generated examples of project descriptions along with the corresponding category and type of
decarbonization activities.

A.3. Identifying carbon solution providers — Additional Information

A.3.A. Firm descriptions

We obtain firm descriptions from Moody’s firmographics database. Moody’s collects and combines
firm-level descriptions of business activities from various public and non-public sources such as
annual reports or local registry filings, standardizes them in a common format, and translates its
information to English language. The data are a single cross section of firms as of January 2024.
We remove descriptions of firms in the banking, insurance & financial services sectors and limit
the sample to firms incorporated in countries of the European Economic Area.31 We include both

28In 2017, the EU and Switzerland agreed to link their emission trading systems. We therefore also include firms reporting
compliance obligations to the Swiss ETS.

2935% of firms representing 95% of total decarbonization investment provide ISIN-identifiers. In case an ISIN is not
provided in a given survey vintage, we backfill this information from more recent data. For about 1% of firms where we
cannot match ISINs to valid Orbis identifiers, we hand match firms based on firm name and location.

30Like other details on decarbonization activities, project descriptions are based on CDP sub-questions CC3.3b for vintages
2015–2017 and C4.3b for vintages 2018–2023.

31As of January 2024 these are 27 EU countries plus Iceland, Liechtenstein, and Norway.
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active and inactive firms and use the ‘Quoted’ indicator to limit the sample to listed firms only.
We then match gvkeys to isin codes provided by Moody’s and only keep descriptions of firms with
valid isin-gvkey matches.

We combine Moody’s data on products and services that contain textual information about
specific products and services offered by the firm with corresponding trade descriptions that include
a curated narrative about the firm’s business model. For descriptions of products offered, we prefer
information from column “main products and services” and in rare cases fill empty values from
“products and services”. Trade descriptions are based on the version that is translated into English
from its original language. We concatenate product and trade descriptions in the format: “Product
and Services: [product and services description]. Business Model: [trade description]”. We clean
firm descriptions by removing source indicators such as “[source: Bureau van Dijk]”, line breaks,
or redundant whitespace. Finally, we remove observations where firm descriptions are less than
10 words.

A.3.B. GPT4

To identify carbon solution providers based on textual firm descriptions, we use OpenAI’s API
that allows for detailed control of GPT4’s behavior such as access to various model parameters or
the option to apply certain prompt engineering techniques outlined below.32 Our analysis is based
on the chat completion module of OpenAI’s API that enables access to GPT4 via a system role
that controls overall model behaviour as well as user and assistant roles resembling user prompts
and GPT4 responses, respectively. We first provide general instructions on how to identify carbon
solution providers via GPT4’s system role:
Enclosed in triple quotes (”””), you will be provided with an unstructured description of a firm’s
business model and its products and services offered. Based on this firm description, your task is
to determine whether the firm is a ‘climate solution‘ firm. Return ”true” only if all three criteria
below are satisfied:
1: The business model is based on climate solutions.
2: The majority of products and services are related to climate solutions.
3: The climate solutions offered help other firms to reduce their climate impact and are not lifestyle
products offered to retail customers such as smart home appliances, electric scooters or bikes.
Below you find a list of examples of climate solutions separated by ”;”. In case the firm provides
climate solutions, return the climate solutions found in the firm description in the format: [Format
Specification].
Examples of climate solutions: [List of Climate Solutions]

The system instruction includes (1) a description of the type of input to expect, (2) the key
objective to identify carbon solution firms, (3) a set of criteria based on carbon solutions that define
a carbon solution firm, (4) examples of carbon solutions, and (5) a description of the desired output
format.33 For examples of carbon solutions, we provide a list of the 50 most frequent solutions
identified from carbon abatement projects in Section III and displayed in Figure 5.

Next, we provide a limited amount of stylized firm descriptions along with desired output as

32Since model version gpt-4-1106-preview, OpenAI allows for reproducable output via a seed parameter. We set seed to 1.
However, reproducable output is not guaranteed if, for example, OpenAI decides to change backend model configurations.

33We require an output in structured form by providing the following format specification: ”climate solution1; cli-
mate solution2. In case the firm does not provide climate solutions, return an empty string: ””. Return your answer
in the following JSON format:{”is opportunity”:true, ”climate solution”:”climate solution1; climate solution2”}.”
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part of a so called ”few-shot” prompting technique. Providing examples via few-shot prompting
allows for context-based learning and helps to condition GPT4 to produce reliable output and thus
avoids the need for resource intensive fine-tuning (Brown et al., 2020). We consider seven examples
of firm descriptions: four examples of carbon solution providers and three negative examples that
are designed to contextualize expected input-output outcomes. Table A.11 presents the examples
and—for firm descriptions of carbon solution providers—the corresponding carbon solutions. We
provide examples of firm descriptions via the user role and corresponding desired output via the
assistant role mimicking a GPT4 response. Finally, for each firm analyzed, we add its description
of business activities enclosed in triple quotations along with a reminder to follow the system
instructions.
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A.4. Tables

Table A.1: Variable definitions

Variable Definition Unit Source

Panel A: Markets
Carbon VIX Carbon Price Uncertainty Index % Subsection I.D
CIV Alternative Carbon Price Uncertainty Index % Subsection I.E
Carbon Price Settlement price of EUA Futures December

front contract
EUR IVolatility

Equity Price Total return index of Euro Stoxx 50 EUR Bloomberg
Ticker: SX5GT

Equity VIX VSTOXX index based on Euro Stoxx 50 % Bloomberg
Ticker: V2TX

Oil Price Settlement price of Brent crude oil futures front
contract

EUR Bloomberg
Ticker: CO1

Oil VIX OVX index based on crude Oil ETF % Bloomberg
Ticker: OVX

Panel B: Firm Financials
DIR Ratio of total decarbonization investment to

scope-1 emissions
EUR/
tCO2e

CDP

Scope-1 Reported scope-1 emissions tCO2e CDP
Total Assets Total assets EUR Moody’s Orbis
ROA EBIT divided by total assets % Moody’s Orbis
Leverage Long term debt divided by total assets % Moody’s Orbis
Capex Change in tangible fixed assets plus and depre-

ciation and amortization divided by total assets
% Moody’s Orbis
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Table A.2: Contract Specifications of EU Emission Allowance Derivatives

Contract EUA Futures EUA Futures Options

Underlying EUA December Future of the relevant year

Contract Series Up to 7 December, 9 quarterly, Up to 7 December, 9 quarterly,

3 August, 2 monthly contracts 3 August, 2 monthly contracts

No contracts beyond Dec. 2030 No contracts beyond Dec. 2030

Expiry Last Monday of contract Month 3 business days before futures expiry

Strikes Min. 5 strikes above and below the
at-the-money strike, in €0.50 intervals

Option Style European

Settlement Daily marked-to-market 2006.11 to 2020.12: Standard
2019.03 onwards: Futures Style

Min Trade Size 1 lot (= 1000 EUA = 1000 tons CO2) 1 lot

Tick Value €10.00 €5.00

Trading Hours 0700 to 1700 (London time) 0700 to 1700 (London time)

Note: This table summarizes the contract specifications for EU carbon allowance futures and EU carbon allowance futures
options. Standard margin: Buyer pays the option premium at purchase, while the seller provides a daily margin. Futures-
style margin: Both buyer and seller provide a daily margin, as is typical for futures contracts.
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Table A.3: EUA Options Implied Volatility

Days to Expiry

10-30 31-120 121-240 241- All

Calls

0.0 ≤ F/K ≤ 0.7 Deep Out Of The Money 113.8 70.6 55.0 50.5 60.8
0.7 < F/K ≤ 0.9 Out Of The Money 56.6 52.2 50.9 48.3 49.3
0.9 < F/K ≤ 1.1 At The Money 54.8 52.6 51.7 48.5 49.5
1.1 < F/K ≤ 1.3 In The Money 66.0 58.6 54.9 49.8 51.6
1.3 < F/K Deep In The Money 115.3 90.6 79.9 61.0 68.8
All 106.1 75.5 62.4 53.5 61.5

Puts

0.0 ≤ K/F ≤ 0.7 Deep Out Of The Money 206.9 115.6 82.5 59.6 73.1
0.7 < K/F ≤ 0.9 Out Of The Money 68.2 58.5 54.9 49.7 51.5
0.9 < K/F ≤ 1.1 At The Money 54.8 52.5 51.7 48.5 49.5
1.1 < K/F ≤ 1.3 In The Money 56.2 52.2 50.0 48.3 49.3
1.3 < K/F Deep In The Money 69.8 64.0 55.4 49.0 54.0
All 121.8 78.2 62.2 52.3 58.4

Note: EUA futures options implied volatilities, split by option contract type. Different rows correspond to different values
of ”moneyness”, where F is the strike price, and K is the current spot price. Different columns correspond to different
option expiration dates. Implied Volatilities are from Black’s futures options pricing model for futures options. We describe
the procedure in section A.1.C. The sample period is 2013.9 - 2022.12.
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Table A.4: EUA Options Open Interest

Days to Expiry

10-30 31-120 121-240 241- All

Calls

0.0 ≤ F/K ≤ 0.7 Deep Out Of The Money 2.2 10.3 9.2 17.1 38.9
0.7 < F/K ≤ 0.9 Out Of The Money 1.4 6.9 4.7 6.9 19.9
0.9 < F/K ≤ 1.1 At The Money 1.7 6.0 4.6 7.4 20.7
1.1 < F/K ≤ 1.3 In The Money 1.1 4.1 3.1 4.0 12.4
1.3 < F/K Deep In The Money 0.5 3.2 2.4 1.0 8.0
All 6.9 31.5 24.1 37.5 100.0

Puts

0.0 ≤ K/F ≤ 0.7 Deep Out Of The Money 4.9 18.7 13.8 18.9 56.3
0.7 < K/F ≤ 0.9 Out Of The Money 3.1 10.0 6.2 8.5 28.8
0.9 < K/F ≤ 1.1 At The Money 1.3 4.5 2.2 3.3 11.3
1.1 < K/F ≤ 1.3 In The Money 0.2 0.9 0.4 0.7 2.3
1.3 < K/F Deep In The Money 0.2 0.7 0.2 0.3 1.4
All 9.7 35.7 22.9 31.6 100.0

Note: EUA futures options open interest (by number of contracts) in percent of the sample total, split by option contract
type. Different rows correspond to different values of ”moneyness”, where F is the strike price, and K is the current spot
price. Different columns correspond to different option expiration dates. The sample period is 2013.9 - 2022.12.
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Table A.5: Carbon VIX and Events: Descriptions and Sources

Date Event Description Source

Nov-2013 Back-loading A majority of Member States endorsed a mandate
to start negotiations with the European Parliament
on the back-loading proposal

EU Commission

Jan-2014 EU ETS Reform Commission launches second step to reform the EU
ETS

EU Commission

Feb-2016 Calls to align with
Paris targets

Corporate lobby groups and member of EU parlia-
ments call for tighter EU ETS cap to align with
Paris targets

Carbon Pulse
IDs 15778,
15650, 16207

Dec-2016 Vote for tighter
supply

EU Parliament’s ENVI votes for more ambitious
ETS reform package

Carbon Pulse
ID 28148

Dec-2018 Market Stability
Reserve

Much of the volatility has been linked to specula-
tive options buying, which in turn stems from in-
vestors betting on big gains ahead of the January
launch of the MSR.

Carbon Pulse
ID 64645

Mar-2020 Covid-19 Measures to combat Covid-19 lead to market tur-
moil

Carbon Pulse
ID 94852

Mar-2022 Ukraine war High energy prices due to uncertainty about Rus-
sian gas supply

Carbon Pulse
ID 152973

Sep-2022 Energy crisis Proposal to release EUR 20 billion out of stability
reserve as part of REPowerEU to decrease EUA
price in light of high energy prices resulting from
energy crisis

EU Commission

Note: Market events around spikes of Carbon VIX are collected from the websites of the European Commission https:
//ec.europa.eu/commission/presscorner, https://climate.ec.europa.eu/news-your-voice/news/, and Carbon Pulse
https://carbon-pulse.com/. Carbon Pulse article IDs in the source column correspond to articles accessible via carbon-
pulse.com/[ID]/.

12

https://ec.europa.eu/commission/presscorner
https://ec.europa.eu/commission/presscorner
https://climate.ec.europa.eu/news-your-voice/news/
https://carbon-pulse.com/


Table A.6: Market Summary Statistics

Mean Median Std AR1 Skew Kurt

Equity Price [EUR] 1,344.05 1,326.15 233.53 0.50 2.38
Equity VIX [%] 20.69 19.29 7.46 2.27 13.08
Oil Price [EUR] 68.44 63.69 22.76 0.59 2.45
Oil VIX [%] 38.64 35.87 18.81 3.61 24.77
Equity Price Return [%] 0.19 0.32 2.29 -2.17 -0.24 3.06
Equity VIX Change [ppt.] -0.10 -0.08 3.01 -10.66 0.06 3.50
Oil Price Return [%] -0.01 0.14 4.40 8.57 -0.29 3.19
Oil VIX Change [ppt.] -0.17 -0.13 4.33 -8.78 -0.05 4.32

Note: Appendix Table A.1 defines the market variables. The data frequency is weekly. All market variables are winsorized
at percentiles 2.5 and 97.5. The AR(1) coefficient is multiplied by 100. The sample period is 2013.9 - 2022.12.
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Table A.7: Summary Statistics: Decarbonization Investment

Projects Reporting Firms Investment [EUR million]

# # % any project Mean P25 P50 P75 Total

Panel A: by Country
USA 1,983 432 49 132.67 0.06 0.37 3.69 263,094
Italy 396 77 49 233.87 0.15 1.47 10.08 92,610
Spain 483 74 69 117.70 0.05 0.25 2.48 56,847
Sweden 232 62 63 217.43 0.05 0.26 1.39 50,443
Japan 1,467 349 45 13.41 0.06 0.31 1.50 19,665
France 530 97 57 35.43 0.07 0.38 2.98 18,777
United Kingdom 1,139 233 55 13.05 0.02 0.14 1.18 14,859
Republic of Korea 488 106 47 29.14 0.04 0.29 1.49 14,221
Portugal 118 15 65 117.17 0.26 1.03 16.73 13,825
China & Hong Kong 519 296 30 25.13 0.00 0.03 0.19 13,044
Canada 507 89 67 22.25 0.10 0.56 4.48 11,278
Brazil 330 120 58 25.69 0.08 0.72 4.36 8,477
India 541 81 50 13.25 0.01 0.08 0.78 7,166
Germany 483 91 49 12.84 0.08 0.41 2.00 6,200
Colombia 53 13 54 107.22 0.02 0.84 7.31 5,682
Singapore 94 12 57 59.50 0.09 1.80 3.48 5,592
Denmark 144 25 51 33.17 0.03 0.31 1.32 4,776
Chile 32 8 72 111.50 0.05 13.08 144.09 3,567
Turkey 200 42 51 16.09 0.02 0.06 0.42 3,217
Ireland 178 32 64 14.53 0.03 0.14 1.24 2,586
Other Countries 2,669 498 52 8.53 0.04 0.23 1.69 22,755

Panel B: by Industry
Utility & Power 1,263 148 82 348.04 0.45 7.57 125.44 439,570
Manufacturing & Materials 5,106 1,298 44 12.56 0.03 0.17 1.09 64,150
Fossil Fuels 1,218 116 88 28.70 0.04 0.52 3.55 34,951
Infrastructure 605 132 55 53.53 0.03 0.21 1.74 32,387
Transport 910 162 67 30.63 0.14 0.71 5.40 27,869
Aviation 117 27 100 207.49 0.13 1.15 40.65 24,276
Food & Agriculture 1,158 210 67 8.39 0.05 0.23 1.21 9,716
Retail 456 137 42 5.15 0.04 0.22 1.38 2,350
Services 929 290 35 2.51 0.02 0.11 0.72 2,330
Health care 513 118 57 0.99 0.03 0.13 0.54 506
Other Sectors 311 116 43 1.88 0.02 0.10 0.54 583

Total 12,586 2,754 48 50.75 0.04 0.26 2.00 638,693

Note: scope-1 decarbonization projects by country (Panel A) and industry (Panel B) of the reporting firm. Column 1
presents the number of projects. Columns 2 and 3 show the number of firms reporting scope-1 decarbonization projects
and the share of firms disclosing any project, respectively. Columns 4–8 report summary statistics of required project
investments. We describe details on sample construction in Appendix Section A.2.
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Table A.8: CDP Decarbonization Projects – Stylized Examples

Category Activity type Project Description Carbon Solution

Process efficiency Process emissions
reductions

Adoption of an innovative carbon cap-
ture system at the manufacturing
plant to significantly reduce CO2 emis-
sions from production processes. The
project includes the installation of new
equipment and training for staff.

carbon capture
system

Process efficiency Energy efficiency:
Processes

Optimization of steam usage by in-
stalling advanced steam traps and con-
ducting regular maintenance checks to
prevent leaks and inefficiencies in our
textile plant in India.

steam traps

Transportation Transportation Expansion of electric vehicle (EV)
charging infrastructure at our sites
across North America to support the
transition of our corporate fleet to
100% electric vehicles by 2025.

EV charging in-
frastructure

Low carbon energy Low-carbon en-
ergy installation

Installation of a geothermal heating
and cooling system at the corporate
headquarters, replacing the old, inef-
ficient HVAC system and significantly
cutting the building’s carbon footprint.

geothermal sys-
tem

Waste Fugitive emis-
sions reductions

Adoption of advanced monitoring tech-
nologies to detect and repair leaks in
natural gas pipelines, significantly re-
ducing methane emissions across our
operations in the Middle East.

leak monitoring
technologies

Note: This table shows stylized, GPT-generated examples of scope-1 decarbonization projects reported to CDP. Activity
type, and project description are provided in the CDP-survey and category is based on our own classification (for a mapping,
see Appendix Table A.9). CDP additionally investment required for each project. Based on 27 randomly selected responses on
firms’ scope-1 emission reduction activities (three for each survey year), we ask GPT4 to generate “five similar decarbonization
projects that include the same activity types but different project descriptions of similar length and content.” Carbon
solutions are keywords extracted by GPT3.5 based on the procedure outlined in Section III.A.
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Table A.9: Decarbonization investment classification

Activity Type Category CDP Activity Type

Building efficiency Energy efficiency: Building services
Energy efficiency in buildings
Energy efficiency: Building fabric

Company policy or behavioral change Company policy or behavioral change
Behavioral change

Low carbon energy Low-carbon energy generation
Low-carbon energy consumption
Low-carbon energy installation
Low-carbon energy purchase

Other Other
Green project finance

Process efficiency Energy efficiency: Processes
Energy efficiency in production processes
Process emissions reductions
Non-energy industrial process emissions reductions

Product design Product design

Transportation Transportation
Transportation: fleet
Transportation: use

Waste Fugitive emissions reductions
Waste reduction and material circularity
Waste recovery

Note: Mapping of types of decarbonization activities as provided by CDP to corresponding activity type categories used in
our analysis.
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Table A.10: Summary Statistics: Decarbonization Investment Panel

Mean P10 P50 P90 Std Obs.

DIR [EUR/tCO2e] 18.23 0.00 1.01 58.44 40.81 4,630
Total Assets [EUR billion] 16.95 1.18 7.96 51.61 20.52 4,098
ROA [%] 11.34 4.34 10.59 19.75 5.81 4,098
Leverage [%] 23.02 3.57 22.20 43.44 14.12 4,098
Capex [%] 6.27 0.26 5.26 13.93 5.02 4,098
Carbon VIX [%] 53.24 45.91 55.14 57.35 4.24 4,630
Carbon Price [EUR] 41.87 16.25 25.06 81.66 24.20 4,630
Oil Price [EUR] 70.04 43.47 70.74 99.55 18.14 4,630

Note: This table present summary statistics of the decarbonization investment panel outlined in Section II. DIR is the ratio
of a firm’s investment in decarbonization activities (EUR) to its scope-1 emissions (tCO2e) disclosed to CDP for a given
reporting period. Total assets, ROA, leverage, and capex are based on firm-level information from Moody’s Orbis. CVIX,
Carbon Price, and Oil Price are averages of weekly CVIX levels, carbon, and crude oil prices (EUR) over the firm’s reporting
period, respectively. Table A.1 details definitions of all variables. The sample covers reporting periods in years 2018–2023.
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Table A.11: GPT4 few-shot prompt examples

# Stylized firm description Carbon solution

1. Products and Services: ”High-tech equipment for photovoltaic, so-
lar, and hydrogen industries to provide renewable energy.” Busi-
ness Model: ”GREEN LC specializes in solar systems, photo-
voltaic (PV) panels, and hydrogen infrastructure. The company
also offers marketing services in B2B channels.”

renewable energy; solar sys-
tems; photovoltaic (PV) pan-
els; hydrogen infrastructure

2. Products and Services: ”Energy efficient heating and insulation
solutions.” Business Model: ”The Company provides technical cli-
mate solutions for energy efficient heating systems, consultancy
services, and energy efficient insulation products for industrial
buildings.”

energy efficient heating sys-
tems; energy efficient insula-
tion; climate solutions

3. Products and Services: ”Flaring prevention and waste heat re-
coverage.” Business Model: ”The company develops and markets
cleantech solutions for reutilizing energy and cleaning of flue and
flaring gases.”

flaring prevention; waste heat
recoverage; energy reutiliza-
tion

4. Products and Services: ”Optimization of energy and energy man-
agement.” Business Model: ”XYZ produces software that is used
to safe and conserve electricity.”

Optimization of energy; en-
ergy management; electricity
conservation

5. Products and Services: ”Oil and gas energy products.” Business
Model: ”The company is involved in the sourcing and distribution
of petroleum products.”

6. Products and Services: ”Hazardous waste treatment.” Business
Model: ”The Company recycles and disposes hazardous material
and radioactive waste. The main activity is the decommissioning
of nuclear facilities and designing radioactive waste management
processes.”

7. Products and Services: ”Water purification and waste water treat-
ment.” Business Model: ”WaterPure Inc develops innovative so-
lutions to treat residual industrial effluents and waste water con-
servation. The Company also manages maritime aquaculture fa-
cilities including recirculation aquaculture systems.”

Note: This tables summarizes stylized examples of firm descriptions and desired output of carbon solutions provided to
GPT4. Appendix Section A.3.A details the prompting procedure.
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Table A.12: Carbon Solution Provider’s Firm Names

BIOMASS ENERGY PROJECT SA, ORRON ENERGY AB, EDP - ENERGIAS DE PORTUGAL S.A., IBER-
DROLA SA, ALERION CLEAN POWER S.P.A., FERNHEIZWERK NEUKOELLN AG, A2A S.P.A., PNE AG,
ACEA SPA, ENERGIEKONTOR AG, ACINQUE S.P.A., IREN S.P.A., SERI INDUSTRIAL S.P.A, POLENER-
GIA S.A., VELCAN HOLDINGS, VOLTALIA, ASCOPIAVE S.P.A., SOLARIA ENERGIA Y MEDIO AMBIENTE
S.A., ENEFI ASSET MANAGEMENT PLC., TERNA ENERGY S.A., EDP RENOVAVEIS SA, EOLUS VIND AB,
ARISE AB, AEGA ASA, SMART GRIDS AG, FRENDY ENERGY S.P.A., G-ENERGY SA, CLEARVISE AG, ABO
WIND AG, EAM SOLAR ASA, ENERGA S.A., ECOSUNTEK SPA, INIZIATIVE BRESCIANE - INBRE - S.P.A.,
AKILES CORPORATION SE, SCATEC ASA, GRENERGY RENOVABLES SA, MINESTO AB, UNIPER SE,
ALTEO ENERGY SERVICES PUBLIC LIMITED COMPANY, NEOEN, AXOLOT SOLUTIONS HOLDING AB,
R ENERGY 1 SA, TION RENEWABLES AG, HYDRO EXPLOITATIONS, HOLALUZ-CLIDOM, S.A., CLOUD-
BERRY CLEAN ENERGY AS, ALTERNUS ENERGY GROUP PLC, AKER HORIZONS ASA, ECOENER S.A.,
HYDROGENE DE FRANCE SA, HEXICON AB, CORPORACION ACCIONA ENERGIAS RENOVABLES S.A.,
GREENVOLT - ENERGIAS RENOVAVEIS, S.A., ENEFIT GREEN AS, WAGA ENERGY SA, ACCIONA SA,
PRZEDSIEBIORSTWO MODERNIZACJI URZADZEN ENERGETYCZNYCH REMAK S.A., SWECO AB, PLC
S.P.A., MARTIFER SGPS S.A., MAIRE TECNIMONT S.P.A., BRAVIDA HOLDING AB, ALEIA HOLDING AG,
ATOMENERGOREMONT AD, INSTALCO AB, VIATRON SA, PHOTON ENERGY N.V., VOOLT SA, REN-
ERGETICA S.P.A., ESI SPA, CADELER A/S, FASADGRUPPEN GROUP AB, TECHNIP ENERGIES N.V, BW
IDEOL AS, OX2 AB, ONDE SA, ROCKWOOL A/S, ENCE ENERGIA Y CELULOSA S.A., NEL ASA, CROPEN-
ERGIES AG, VERBIO VEREINIGTE BIOENERGIE AG, EO2, STEICO SE, MOULINVEST, ZENERGY AB,
VA-Q-TEC AG, SVENSKA AEROGEL HOLDING AB, DEKTRA SA, HOFFMANN GREEN CEMENT TECH-
NOLOGIES, EVERFUEL A/S, CIRCHEM AB, HORISONT ENERGI AS, CIRCA GROUP AS, DESERT CON-
TROL AS, VOW GREEN METALS AS, AFYREN SA, BETOLAR OYJ, KINGSPAN GROUP PLC RAFAKO S.A.,
CIE AUTOMOTIVE S.A., INTRACOM HOLDINGS S.A., VESTAS WIND SYSTEMS A/S, NIBE INDUSTRIER
AB, PVA TEPLA AG, VALOE OYJ, SOLARWORLD AG, NORDEX SE, ENAPTER AG, SOLAR-FABRIK AK-
TIENGESELLSCHAFT FUER PRODUKTION UND VERTRIEB VON SOLARTECHNISCHEN PRODUKTEN,
7C SOLARPARKEN AG, VADSBO SWITCHTECH GROUP AB, REC SILICON ASA, EEMS ITALIA S.P.A.,
SAXLUND GROUP AB, MANZ AG, VERGNET S A VSA, LANDI RENZO S.P.A., ENVITEC BIOGAS AG, CEN-
TROTHERM INTERNATIONAL AG, SMA SOLAR TECHNOLOGY AG, ALGOWATT SPA, ENERTRONICA
SANTERNO SPA, ASETEK AS, ECOMB AB, INNOVATEC S.P.A., MCPHY ENERGY, LUCIBEL SA, POWER-
CELL SWEDEN AB, NHOA SA, SOLTECH ENERGY SWEDEN AB, HYBRICON AB, SUNEX SA, SENVION SA,
ENERTIME, NFO DRIVES AB, MERIAURA GROUP OYJ, SALTX TECHNOLOGY HOLDING AB, SEATWIRL
AB, TERMO2POWER S.A., AUMANN AG, ABSOLICON SOLAR CO, duplicate, GEO-TERM POLSKA SA, MAN-
TEX AB, SUSTAINABLE ENERGY SOLUTIONS SWEDEN HOLDING AB, SWEDISH STIRLING AB, CLIMEON
AB, ALFEN N.V., MIDSUMMER AB, ML SYSTEM S.A., AZELIO AB, BLUE SHARK POWER SYSTEM, KO-
RADO BULGARIA AD, AGRIPOWER FRANCE SA, QLEANAIR AB, MELTRON AB, HYDROGENPRO ASA,
SOLTEC POWER HOLDINGS S.A., HYDROGEN REFUELING SOLUTIONS SA, CAMBI ASA, HAV GROUP
ASA, LOKOTECH GROUP AS, KYOTO GROUP AS, NILAR INTERNATIONAL AB, MERUS POWER OYJ,
GREEN HYDROGEN SYSTEMS A/S, ATON GREEN STORAGE S.P.A., ENOGIA SA, ENERGIA INNOVACION
Y DESARROLLO FOTOVOLTAICO S.A., FORSEE POWER SAS, EBUSCO HOLDING N.V., GRODNO S.A.,
HYNION AS, EDDA WIND ASA, PSI SOFTWARE SE, VITEC SOFTWARE GROUP AB, CLEAN LOGISTICS
SE, ENERSIZE OYJ, KLAPPIR GRAENAR LAUSNIR HF., DLABORATORY SWEDEN AB, ENNOGIE SOLAR
GROUP A/S, NORDIC FLANGES GROUP AB, PRIVANET GROUP OYJ, GREENCOAT RENEWABLES PLC,
CR ENERGY AG, METACON AB, INTEGRATED WIND SOLUTIONS ASA, MASTERPLAST NYILVANOSAN
MUKODO RESZVENYTARSASAG, BRAS SA, TERMOEXPERT S.A., DB ENERGY SA, OCEAN SUN AS, AU-
REA, A.I.S. AG, GREENTHESIS S.P.A, GRINO ECOLOGIC S.A., CAVERION CORPORATION, QUANTAFUEL
AS PRYME N.V., AKER CARBON CAPTURE AS

Note: Names of firms that we identify as Carbon Solution Providers in section III.B.
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Table A.13: Countries in the European Economic Area

Countries with Carbon Solution Firms

Germany (deu), Spain (esp), France (fra), Italy (ita), Austria (aut), Denmark (dnk), Finland
(fin), Ireland (irl), Netherlands (nld), Norway (nor), Sweden (swe), Poland (pol), Iceland
(isl), Portugal (prt), Hungary (hun), Greece (grc), Estonia (est), Bulgaria (bgr), Cyprus
(cyp), Romania (rou)

Countries without Carbon Solution Firms

Belgium (bel), Luxemburg (lux), Lithuania (ltu), Czech Republic (cze), Slovenia (svn), Slo-
vakia (svk), Croatia (hrv), Latvia (lva), Malta (mlt)

Note: Countries in the European Economic Area as of 2024.01, excluding Liechtenstein. These countries form the sample
for our stock return analysis. Countries are split between countries with- and without idetified carbon solution firms.
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A.5. Figures

Figure A.1: Carbon VIX and realized carbon volatility.

(a) (b)

Note: Panel (a) shows weekly Carbon VIX (solid blue), 120-day realized past (future) volatility in red dash-dotted (dotted
grey), where future realized volatility is 16 weeks ahead of past realized volatility. Panel (b) plots weekly levels of future
realized volatility on the level of Carbon VIX along with a 45 degree line.
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Figure A.2: Provided Carbon Solutions

Note: Carbon solutions are based on 50 most frequent decarbonization products offered by carbon solution providers
identified in Section III. Categories of provided carbon solutions are based on the closest cosine similarity to carbon solutions
identified from CDP survey-responses.

22


	Measuring Carbon Price Uncertainty
	Cap-and-Trade Systems
	The European Emissions Trading System
	Option Prices and Uncertainty.
	The Carbon VIX.
	Carbon Option Implied Volatility.
	Exploring Carbon Price Uncertainty

	Carbon VIX and Firm-Level Decarbonization Investments
	Measuring Decarbonization Activities
	Carbon Price Uncertainty and Decarbonization Investments

	Carbon VIX and Stock Returns of Carbon Solution Providers
	Identifying carbon solutions
	Identifying carbon solution providers
	Carbon VIX and Stock Returns of Carbon Solutions Providers

	Conclusion
	Markets
	EU ETS Derivatives — Additional Information
	The Carbon VIX — Additional Information
	Carbon Option Implied Volatility — Additional Information
	Other Data — Additional Information

	Survey data
	A panel of decarbonization investment
	Project descriptions

	Identifying carbon solution providers — Additional Information
	Firm descriptions
	GPT4

	Tables
	Figures

